Seminars and Colloquia by Series

Benjamin-Ono soliton dynamics in a slowly varying potential

Series
PDE Seminar
Time
Thursday, January 16, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zhiyuan ZhangBrown University

We consider the Benjamin Ono equation, modeling one-dimensional long interval waves in a stratified fluid, with a slowly-varying potential perturbation. Starting with near soliton initial data, we prove that the solution remains close to a soliton wave form, with parameters of position and scale evolving according to effective ODEs depending on the potential. The result is valid on a time-scale that is dynamically relevant, and highlights the effect of the perturbation. It is proved using a Lyapunov functional built from energy and mass, Taylor expansions, spectral estimates, and estimates for the Hilbert transform.

Extremal Problems in Discrete Geometry

Series
Job Candidate Talk
Time
Tuesday, January 14, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Zilin JiangMIT

What is the smallest total width of a collection of strips that cover a disk in the plane? How many lines through the origin pairwise separated by the same angle can be placed in 3-dimensional space? What about higher-dimensions?

These extremal problems in Discrete Geometry look deceitfully simple, yet some of them remain unsolved for an extended period or have been partly solved only recently following great efforts. In this talk, I will discuss two longstanding problems: Fejes Tóth’s zone conjecture and a problem on equiangular lines with a fixed angle.

No specific background will be needed to enjoy the talk.

Joint UGA-GT Topology Seminar at GT: Branched covers bounding rational homology balls

Series
Geometry Topology Seminar
Time
Monday, January 13, 2020 - 16:00 for 1 hour (actually 50 minutes)
Location
Boyd
Speaker
JungHwan ParkGeorgia Tech

Prime-power-fold cyclic branched covers along smoothly slice knots all bound rational homology balls. This phenomenon, however, does not characterize slice knots: In this talk, we give examples of non-slice knots that have the above property. This is joint work with Aceto, Meier, A. Miller, M. Miller, and Stipsicz.

Brill–Noether theory of Prym varieties

Series
Algebra Seminar
Time
Monday, January 13, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yoav LenGeorgia Tech

The talk will revolve around combinatorial aspects of Abelian varieties. I will focus on Pryms, a class of Abelian varieties that occurs in the presence of double covers, and have deep connections with torsion points of Jacobians, bi-tangent lines of curves, and spin structures. I will explain how problems concerning Pryms may be reduced, via tropical geometry, to problems on metric graphs. As a consequence, we obtain new results concerning the geometry of special algebraic curves, and bounds on dimensions of certain Brill–Noether loci.

Joint UGA-GT Topology Seminar at UGA: Knot Floer homology and cosmetic surgeries

Series
Geometry Topology Seminar
Time
Monday, January 13, 2020 - 14:30 for 1 hour (actually 50 minutes)
Location
Boyd
Speaker
Jonathan HanselmanPrinceton University

The cosmetic surgery conjecture states that no two different Dehn surgeries on a given knot produce the same oriented 3-manifold (such a pair of surgeries is called purely cosmetic). For knots in S^3, I will describe how knot Floer homology provides a strong obstruction to the existence of purely cosmetic surgeries. For many knots, including all alternating knots with genus not equal to two as well as all but 337 of the first 1.7 million knots, this is enough to confirm the conjecture. For the remaining knots, all but finitely many surgery slopes are obstructed, so checking the conjecture for a given knot reduces to distinguishing finitely many pairs of manifolds. Using a computer search, the conjecture has been verified for all prime knots with up to 16 crossings, as well as for arbitrary connected sums of such knots. These results significantly improve on earlier work of Ni and Wu, who also used Heegaard Floer homology to obstruct purely cosmetic surgeries. The improvement comes from using the full graded Heegaard Floer invariant, which is facilitated by a recent recasting of knot Floer homology as a collection of immersed curves in the punctured torus.

Rigidity for expanding maps

Series
CDSNS Colloquium
Time
Monday, January 13, 2020 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Federico Rodriguez HertzPenn State

In a recent work with A. Gogolev we found some new form of rigidity for expanding maps through marching of potentials (also named cocycles). In this talk I plan to discuss these rigidity results and explain how this relates to some old results by Shub and Sullivan and de la Llave.

Non-concentration of the chromatic number of a random graph

Series
Combinatorics Seminar
Time
Friday, January 10, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Lutz Warnke

We shall discuss the recent breakthrough of  Annika Heckel on the chromatic number of the binomial random graph G(n,1/2),  showing that it is not concentrated on any sequence of intervals of length n^{1/4-o(1)}.

To put this into context, in 1992 Erdos (and also Bollobás in 2004) asked for any non-trivial results asserting a lack of concentration, pointing out that even the weakest such results would be of interest.  
Until recently this seemed completely out of reach, in part because there seemed to be no obvious approach/strategy how to get one's foot in the door. 
Annika Heckel has now found such an approach, based on a clever coupling idea that compares the chromatic number of G(n,1/2) for different n. 
In this informal talk we shall try to say a few words about her insightful proof approach from https://arxiv.org/abs/1906.11808

Please note the unusual room (Skiles 202)

Learning Optimal Reserve Price against Non-myopic Bidders

Series
ACO Student Seminar
Time
Friday, January 10, 2020 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jinyan LiuUniversity of Hong Kong

We consider the problem of learning optimal reserve price in repeated auctions against non- myopic bidders, who may bid strategically in order to gain in future rounds even if the single- round auctions are truthful. Previous algorithms, e.g., empirical pricing, do not provide non- trivial regret rounds in this setting in general. We introduce algorithms that obtain a small regret against non-myopic bidders either when the market is large, i.e., no single bidder appears in more than a small constant fraction of the rounds, or when the bidders are impatient, i.e., they discount future utility by some factor mildly bounded away from one. Our approach carefully controls what information is revealed to each bidder, and builds on techniques from differentially private online learning as well as the recent line of works on jointly differentially private algorithms.

Learning mixtures of permutations from groups of comparisons

Series
Stochastics Seminar
Time
Thursday, January 9, 2020 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Cheng MaoGeorgia Institute of Technology

In various applications involving ranking data, statistical models for mixtures of permutations are frequently employed when the population exhibits heterogeneity. In this talk, I will discuss the widely used Mallows mixture model. I will introduce a generic polynomial-time algorithm that learns a mixture of permutations from groups of pairwise comparisons. This generic algorithm, equipped with a specialized subroutine, demixes the Mallows mixture with a sample complexity that improves upon the previous state of the art.

Continued gravitational collapse for Newtonian stars

Series
PDE Seminar
Time
Thursday, January 9, 2020 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mahir HadzicUniversity College London

The basic model of an isolated self-gravitating gaseous star is given by the gravitational Euler-Poisson system. For any value of the adiabatic index strictly between 1 and 4/3 we construct an infinite-dimensional family of collapsing solutions to the Euler-Poisson system whose density is in general space inhomogeneous and undergoes gravitational blowup along a prescribed space-time surface in the Lagrangian coordinates. The leading order singular behaviour is driven by collapsing dust solutions. This is a joint work with Yan Guo (Brown) and Juhi Jang (USC).

Pages