Seminars and Colloquia by Series

Cosmetic surgeries on knots in S^3

Series
Geometry Topology Student Seminar
Time
Wednesday, February 26, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hugo ZhouGeorgia Tech

Cosmetic surgeries (purely cosmetic surgeries) are two distinct surgeries on a knot that produce homeomorphic 3-manifolds (as oriented manifolds). It is one of the ways Dehn surgeries on knots could fail to be unique. Gordon conjectured that there are no nontrivial purely cosmetic surgeries on nontrivial knots in S^3. We will recap the progress of the problem over time, and mainly discuss Ni and Wu's results in their paper "Cosmetic surgeries on knots in S^3".

Geometric averaging operators and points configurations

Series
Analysis Seminar
Time
Wednesday, February 26, 2020 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Eyvindur Ari PalssonVirginia Tech

Two classic questions -- the Erdos distinct distance problem, which asks about the least number of distinct distances determined by N points in the plane, and its continuous analog, the Falconer distance problem -- both focus on the distance, which is a simple two point configuration. When studying the Falconer distance problem, a geometric averaging operator, namely the spherical averaging operator, arises naturally. Questions similar to the Erdos distinct distance problem and the Falconer distance problem can also be posed for more complicated patterns such as triangles, which can be viewed as 3-point configurations. In this talk I will give a brief introduction to the motivating point configuration questions and then report on some novel geometric averaging operators and their mapping properties.

Modeling malaria development in mosquitoes: How fast can mosquitoes pass on infection?

Series
Mathematical Biology Seminar
Time
Wednesday, February 26, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lauren ChildsVirginia Tech

The malaria parasite Plasmodium falciparum requires a vertebrate host, such as a human, and a vector host, the Anopheles mosquito, to complete a full life cycle. The portion of the life cycle in the mosquito harbors both the only time of sexual reproduction, expanding genetic complexity, and the most severe bottlenecks experienced, restricting genetic diversity, across the entire parasite life cycle. In previous work, we developed a two-stage stochastic model of parasite diversity within a mosquito, and demonstrated the importance of heterogeneity amongst parasite dynamics across a population of mosquitoes. Here, we focus on the parasite dynamics component to evaluate the first appearance of sporozoites, which is key for determining the time at which mosquitoes first become infectious. We use Bayesian inference techniques with simple models of within-mosquito parasite dynamics coupled with experimental data to estimate a posterior distribution of parameters. We determine that growth rate and the bursting function are key to the timing of first infectiousness, a key epidemiological parameter.

Existence and uniqueness to a fully non-linear version of the Loewner-Nirenberg problem

Series
PDE Seminar
Time
Tuesday, February 25, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yanyan LiRutgers University

We consider the problem of finding on a given bounded and smooth
Euclidean domain \Omega of dimension n ≥ 3 a complete conformally flat metric whose Schouten
curvature A satisfies some equation of the form  f(\lambda(-A)) =1. This generalizes a problem
considered by Loewner and Nirenberg for the scalar curvature. We prove the existence and uniqueness of
locally Lipschitz solutions. We also show that the Lipschitz regularity is in general optimal.

Hankel index of a projection of rational normal curve.

Series
Student Algebraic Geometry Seminar
Time
Monday, February 24, 2020 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jaewoo JungGeorgia Tech

The dual of the cone of non-negative quadratics (on a variety) is included in the dual of the cone of sums of squares. Moreover, all (points which span) extreme rays of the dual cone of non-negative quadratics is point evaluations on real points of the variety. Therefore, we are interested in extreme rays of the dual cone of sums of squares which do not come from point evaluations. The dual cone of sums of squares on a variety is called the Hankel spectrahetron and the smallest rank of extreme rays which do not come from point evaluations is called Hankel index of the variety. In this talk, I will introduce some algebraic (or geometric) properties which control the Hankel index of varieties and compute the Hankel index of rational curves obtained by projecting rational normal curve away from a point (which has almost minimal degree).

Differential Invariant Algebras

Series
Algebra Seminar
Time
Monday, February 24, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter OlverUniversity of Minnesota

A classical theorem of Lie and Tresse states that the algebra of differential invariants of a Lie group or (suitable) Lie pseudo-group action is finitely generated.  I will present a fully constructive algorithm, based on the equivariant method of moving frames, that reveals the full structure of such non-commutative differential algebras, and, in particular, pinpoints generating sets of differential invariants as well as their differential syzygies. Some applications and outstanding issues will be discussed.

From veering triangulations to link spaces and back again

Series
Geometry Topology Seminar
Time
Monday, February 24, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Henry SegermanOklahoma State University
Agol introduced veering triangulations of mapping tori, whose combinatorics are canonically associated to the pseudo-Anosov monodromy. In unpublished work, Guéritaud and Agol generalise an alternative construction to any closed manifold equipped with a pseudo-Anosov flow without perfect fits. Schleimer and I build the reverse map. As a first step, we construct the link space for a given veering triangulation. This is a copy of R2, equipped with transverse stable and unstable foliations, from which the Agol-Guéritaud's construction recovers the veering triangulation. The link space is analogous to Fenley's orbit space for a pseudo-Anosov flow. Along the way, we construct a canonical circular ordering of the cusps of the universal cover of a veering triangulation. I will also talk about work with Giannopolous and Schleimer building a census of transverse veering triangulations. The current census lists all transverse veering triangulations with up to 16 tetrahedra, of which there are 87,047.

Data-Driven Structured Matrix Approximation by Separation and Hierarchy

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 24, 2020 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dr. Difeng CaiEmory University, Department of Mathematics

The past few years have seen the advent of big data, which brings unprecedented convenience to our daily life. Meanwhile, from a computational point of view, a central question arises amid the exploding amount of data: how to tame big data in an economic and efficient way. In the context of matrix computations, the question consists in the ability to handle large dense matrices. In this talk, I will first introduce data-sparse hierarchical representations for dense matrices. Then I will present recent development of a new data-driven algorithm called SMASH to operate dense matrices efficiently in the most general setting. The new method not only outperforms existing algorithms but also works in high dimensions. Various experiments will be provided to justify the advantages of the new method.

 

The Elastica Model for Image Restoration: An Operator-Splitting Approach

Series
Applied and Computational Mathematics Seminar
Time
Friday, February 21, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Roland GlowinskiUniversity of Houston, Hong Kong Baptist University

The most popular model for Image Denoising is without any doubt the ROF (for Rudin-OsherFatemi) model. However, since the ROF approach has some drawbacks (the stair-case effect being one of them) practitioners have been looking for alternatives. One of them is the Elastica model, relying on the minimization in an appropriate functional space of the energy functional $J$ defined by

$$ J(v)=\varepsilon \int_{\Omega} \left[ a+b\left| \nabla\cdot \frac{\nabla v}{|\nabla v|}\right|^2 \right]|\nabla v| d\mathbf{x} + \frac{1}{2}\int_{\Omega} |f-v|^2d\mathbf{x} $$

where in $J(v)$: (i) $\Omega$ is typically a rectangular region of $R^2$ and $d\mathbf{x}=dx_1dx_2$. (ii) $\varepsilon, a$ and $b$ are positive parameters. (iii) function $f$ represents the image one intends to denoise.

Minimizing functional $J$ is a non-smooth, non-convex bi-harmonic problem from Calculus of  Variations. Its numerical solution is a relatively complicated issue. However, one can achieve this task rather easily by combining operator-splitting and finite element approximations. The main goal of this lecture is to describe such a methodology and to present the results of numerical experiments which validate it.

The Karger-Stein Algorithm is Optimal for k-cut

Series
ACO Student Seminar
Time
Friday, February 21, 2020 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jason LiCS, Carnegie Mellon University

In the $k$-cut problem, we are given an edge-weighted graph and want to find the least-weight set of edges whose deletion breaks the graph into $k$ connected components. Algorithms due to Karger-Stein and Thorup showed how to find such a minimum $k$-cut in time approximately $O(n^{2k-2})$. The best lower bounds come from conjectures about the solvability of the $k$-clique problem and a reduction from $k$-clique to $k$-cut, and show that solving $k$-cut is likely to require time $\Omega(n^k)$. Our recent results have given special-purpose algorithms that solve the problem in time $n^{1.98k + O(1)}$, and ones that have better performance for special classes of graphs (e.g., for small integer weights).

In this work, we resolve the problem for general graphs, by showing that for any fixed $k \geq 2$, the Karger-Stein algorithm outputs any fixed minimum $k$-cut with probability at least $\widehat{O}(n^{-k})$, where $\widehat{O}(\cdot)$ hides a $2^{O(\ln \ln n)^2}$ factor. This also gives an extremal bound of $\widehat{O}(n^k)$ on the number of minimum $k$-cuts in an $n$-vertex graph and an algorithm to compute a minimum $k$-cut in similar runtime. Both are tight up to $\widehat{O}(1)$ factors.

The first main ingredient in our result is a fine-grained analysis of how the graph shrinks---and how the average degree evolves---under the Karger-Stein process. The second ingredient is an extremal result bounding the number of cuts of size at most $(2-\delta) OPT/k$, using the Sunflower lemma.

Pages