Seminars and Colloquia by Series

Open Forum: Pierre-Emmanuel Jabin

Series
Other Talks
Time
Friday, February 21, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Pierre-Emmanuel JabinUniversity of Maryland, College Park

This is the open forum for Pierre-Emmanuel   Jabin (https://home.cscamm.umd.edu/~jabin/)

as a candidate for Elaine M. Hubbard Chair in Mathematics.

Critical first-passage percolation in high dimensions

Series
Stochastics Seminar
Time
Thursday, February 20, 2020 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jack HansonCity College of New York

In critical Bernoulli percolation on $\mathbb{Z}^d$ for $d$ large, it is known that there are a.s. no infinite open clusters. In particular, for n large, every path from the origin to the boundary of $[-n, n]^d$ must contain some closed edges. Let $T_n$ be the (random) minimal number of closed edges in such a path. How does $T_n$ grow with $n$? We present results showing that for d larger than the upper critical dimension for Bernoulli percolation ($d > 6$), $T_n$ is typically of the order $\log \log n$. This is in contrast with the $d = 2$ case, where $T_n$ grows logarithmically. Perhaps surprisingly, the model exhibits another major change in behavior depending on whether $d > 8$.

Maximum Weight Internal Spanning Tree Problem

Series
Graph Theory Working Seminar
Time
Thursday, February 20, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Arti Pandey Indian Institute of Technology Ropar

 

Given a vertex-weighted graph G= (V, E), the MaximumWeight Internal Spanning Tree (MWIST) problem is to find a spanning tree T of G such that the total weight of internal vertices in T is maximized. The unweighted version of this problem, known as Maxi-mum Internal Spanning Tree (MIST) problem, is a generalization of the Hamiltonian path problem, and hence, it is NP-hard. In the literature lot of research has been done on designing approximation algorithms to achieve an approximation ratio close to 1. The best known approximation algorithm achieves an approximation ratio of 17/13 for the MIST problem for general graphs. For the MWIST problem, the current best approximation algorithm achieves an approximation ratio of 2 for general graphs. Researchers have also tried to design exact/approximation algorithms for some special classes of graphs. The MIST problem parameterized by the number of internal vertices k, and its special cases and variants, have also been extensively studied in the literature. The best known kernel for the general problem has size 2k, which leads to the fastest known exact algorithm with running time O(4^kn^{O(1)}). In this talk, we will talk about some selected recent results on the MWIST problem.

Large stochastic systems of interacting particles

Series
Job Candidate Talk
Time
Thursday, February 20, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Pierre-Emmanuel JabinUniversity of Maryland, College Park

I will present some recent results, obtained with D. Bresch and Z. Wang, on large stochastic many-particle or multi-agent systems. Because such systems are conceptually simple but exhibit a wide range of emerging macroscopic behaviors, they are now employed in a large variety of applications from Physics (plasmas, galaxy formation...) to the Biosciences, Economy, Social Sciences...

The number of agents or particles is typically quite large, with 10^20-10^25 particles in many Physics settings for example and just as many equations. Analytical or numerical studies of such systems are potentially very complex  leading to the key question as to whether it is possible to reduce this complexity, notably thanks to the notion of propagation of chaos (agents remaining almost uncorrelated).

To derive this propagation of chaos, we have introduced a novel analytical method, which led to the resolution of two long-standing conjectures:
        _The quantitative derivation of the 2-dimensional incompressible Navier-Stokes system from the point vortices dynamics;
       _The derivation of the mean-field limit for attractive singular interactions such as in the Keller-Segel model for chemotaxis and some Coulomb gases.

Small Ball Probability for the Smallest Singular Value of a Complex Random Matrix

Series
High Dimensional Seminar
Time
Wednesday, February 19, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michail SarantisGeorgiaTech

Let $N_n$ be an $n\times n$ matrix whose entries are i.i.d. copies of a random variable $\zeta=\xi+i\xi'$, where $\xi,\xi'$ are i.i.d., mean zero, variance one, subgaussian random variables. We will present a result of Luh, according to which the probability that $N_n$ has a real eigenvalue is exponentially small in $n$. An interesting part of the proof is a small ball probability estimate for the smallest singular value of a complex perturbation $M_n=M+N_n$ of the original matrix.

Lifting Covers to Braided Embeddings

Series
Geometry Topology Student Seminar
Time
Wednesday, February 19, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sudipta KolayGeorgia Tech

An embedding of a manifold into a trivial disc bundle over another manifold is called braided if projection onto the first factor gives a branched cover. This notion generalizes closed braids in the solid torus, and gives an explicit way to construct many embeddings in higher dimensions. In this talk, we will discuss when a covering map of surfaces lift to a braided embedding.

Descriptive combinatorics and the probabilistic method

Series
Job Candidate Talk
Time
Tuesday, February 18, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Anton BernshteynCarnegie Mellon University (CMU)

Descriptive combinatorics studies the interaction between classical combinatorial concepts, such as graph colorings and matchings, and notions from measure theory and topology. Results in this area enable one to apply combinatorial techniques to problems in other (seemingly unrelated) branches of mathematics, such as the study of dynamical systems. In this talk I will give an introduction to descriptive combinatorics and discuss some recent progress concerning a particular family of combinatorial tools---the probabilistic method---and its applications in the descriptive setting.

Dual spaces and Noetherian operators

Series
Student Algebraic Geometry Seminar
Time
Monday, February 17, 2020 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Marc HärkönenGeorgia Tech

Noetherian operators are a set of differential operators that encode the scheme structure of a primary ideal. We propose a framework for studying primary ideals numerically by using a combination of witness sets and Noetherian operators. We will also present a method for computing Noetherian operators using numerical data. 

The first step in the theory of Noetherian operators are the Macaulay dual spaces. Indeed, for an ideal that is primary over a maximal ideal corresponding to a rational point, the generators of the dual space are a valid set of Noetherian operators. We will start by presenting basic ideas, results and algorithms in the classical dual space theory, and then revisit some of these ideas in the context of Noetherian operators.

Oriented Matroids and Combinatorial Neural Codes

Series
Algebra Seminar
Time
Monday, February 17, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zvi RosenFlorida Atlantic University

A combinatorial neural code is convex if it arises as the intersection pattern of convex open subsets of Euclidean space. We relate the emerging theory of convex neural codes to the established theory of oriented matroids, both categorically and with respect to feasibility and complexity. By way of this connection, we prove that all convex codes are related to some representable oriented matroid, and we show that deciding whether a neural code is convex is NP-hard.

Spaces of trees and fatgraphs for string topology and moduli spaces

Series
Geometry Topology Seminar
Time
Monday, February 17, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kate PoirierCUNY - City College of Technology

Spaces of fatgraphs have long been used to study a variety of topics in math and physics. In this talk, we introduce two spaces of fatgraphs arising in string topology—one which parameterizes operations on chains of the free loop space of a manifold and one which parametrizes operations on Hochschild cochains of a “V-infinity” algebra. We present a conjecture relating these two spaces to one another and to the moduli space of Riemann surfaces. We also introduce polyhedra called “assocoipahedra” which generalize Stasheff’s associahedra to algebras with a compatible co-inner product. Assocoipahedra are used to prove that the dioperad governing V-infinity algebras satisfies certain algebraic properties. 

Pages