Comparison of sequences generated by a hidden Markov model
- Series
- Dissertation Defense
- Time
- Tuesday, March 12, 2019 - 13:30 for 1.5 hours (actually 80 minutes)
- Location
- Skiles 005
- Speaker
- George Kerchev – Georgia Tech
Let X be a degree d curve in the projective space P^r.
A general hyperplane H intersects X at d distinct points; varying H defines a monodromy action on X∩H. The resulting permutation group G is the sectional monodromy group of X. When the ground field has characteristic zero the group G is known to be the full symmetric group.
By work of Harris, if G contains the alternating group, then X satisfies a strengthened Castelnuovo's inequality (relating the degree and the genus of X).
The talk is concerned with sectional monodromy groups in positive characteristic. I will describe all non-strange non-degenerate curves in projective spaces of dimension r>2 for which G is not symmetric or alternating. For a particular family of plane curves, I will compute the sectional monodromy groups and thus answer an old question on Galois groups of generic trinomials.
Mathapalooza! is simultaneously a Julia Robinson Mathematics Festival and an event of the Atlanta Science Festival. There will be puzzles and games, a magic show by Matt Baker, mathematically themed courtroom skits by GT Club Math, a presentation about math and dance by Manuela Manetta, a presentation about math and music by David Borthwick, and a gallery of mathematical art curated by Elisabetta Matsumoto. It is free, and we anticipate engaging hundreds of members of the public in the wonders of mathematics. More info at https://mathematics-in-motion.org/about/Be there or B^2 !
Two recent extensions of optimal mass transport theory will be covered. In the first part of the talk, we will discuss measure-valued spline, which generalizes the notion of cubic spline to the space of distributions. It addresses the problem to smoothly interpolate (empirical) probability measures. Potential applications include time sequence interpolation or regression of images, histograms or aggregated datas. In the second part of the talk, we will introduce matrix-valued optimal transport. It extends the optimal transport theory to handle matrix-valued densities. Several instances are quantum states, color images, diffusion tensor images and multi-variate power spectra. The new tool is expected to have applications in these domains. We will focus on theoretical side of the stories in both parts of the talk.
Let $\nu$ denote the maximum size of a packing of edge-disjoint triangles in a graph $G$. We can clearly make $G$ triangle-free by deleting $3\nu$ edges. Tuza conjectured in 1981 that $2\nu$ edges suffice, and proved it for planar graphs. The best known general bound is $(3-\frac{3}{23})\nu$ proven by Haxell in 1997. We will discuss this proof and some related results.