Seminars and Colloquia by Series

Hidden symmetries of the hydrogen atom

Series
School of Mathematics Colloquium
Time
Tuesday, April 2, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
John BaezUC Riverside
A classical particle moving in an inverse square central force, like a planet in the gravitational field of the Sun, moves in orbits that do not precess. This lack of precession, special to the inverse square force, indicates the presence of extra conserved quantities beyond the obvious ones. Thanks to Noether's theorem, these indicate the presence of extra symmetries. It turns out that not only rotations in 3 dimensions, but also in 4 dimensions, act as symmetries of this system. These extra symmetries are also present in the quantum version of the problem, where they explain some surprising features of the hydrogen atom. The quest to fully understand these symmetries leads to some fascinating mathematical adventures.

Embedding Seifert fibered spaces in the 4-sphere

Series
Geometry Topology Seminar
Time
Monday, April 1, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ahmad IssaUniversity of Texas, Austin

Which 3-manifolds smoothly embed in the 4-sphere? This seemingly simple question turns out to be rather subtle. Using Donaldson's theorem, we derive strong restrictions to embedding a Seifert fibered space over an orientable base surface, which in particular gives a complete classification when e > k/2, where k is the number of exceptional fibers and e is the normalized central weight. Our results point towards a couple of interesting conjectures which I'll discuss. This is joint work with Duncan McCoy.

Shape dynamics of point vortices

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 1, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Tomoki OhsawaUT Dallas
We present a Hamiltonian formulation of the dynamics of the ``shape'' of N point vortices on the plane and the sphere: For example, if N=3, it is the dynamics of the shape of the triangle formed by three point vortices, regardless of the position and orientation of the triangle on the plane/sphere.For the planar case, reducing the basic equations of point vortex dynamics by the special Euclidean group SE(2) yields a Lie-Poisson equation for relative configurations of the vortices. Particularly, we show that the shape dynamics is periodic in certain cases. We extend the approach to the spherical case by first lifting the dynamics from the two-sphere to C^2 and then performing reductions by symmetries.

Combinatorics of line arrangements on tropical cubic surfaces

Series
Algebra Seminar
Time
Monday, April 1, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Maria Angelica CuetoOhio State University

The classical statement that there are 27 lines on every smooth cubic surface in $\mathbb{P}^3$ fails to hold under tropicalization: a tropical cubic surface in $\mathbb{TP}^3$ often contains infinitely many tropical lines. This pathology can be corrected by reembedding the cubic surface in $\mathbb{P}^{44}$ via the anticanonical bundle.

Under this tropicalization, the 27 classical lines become an arrangement of metric trees in the boundary of the tropical cubic surface in $\mathbb{TP}^{44}$. A remarkable fact is that this arrangement completely determines the combinatorial structure of the corresponding tropical cubic surface. In this talk, we will describe their metric and topological type as we move along the moduli space of tropical cubic surfaces. Time permitting, we will discuss the matroid that emerges from their tropical convex hull.

This is joint work with Anand Deopurkar.

Doubly slice Montesinos links

Series
Geometry Topology Seminar Pre-talk
Time
Monday, April 1, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ahmad IssaUniversity of Texas, Austin

A link in the 3-sphere is doubly slice if it is the cross-section of an unknotted 2-sphere in the 4-sphere. The double branched cover of a doubly slice link is a 3-manifold which embeds in the 4-sphere. For doubly slice Montesinos links, this produces embeddings of Seifert fibered spaces in S^4. In this pre-talk, I'll discuss a construction and an obstruction to being doubly slice.

Specialization Models of Network Growth

Series
CDSNS Colloquium
Time
Monday, April 1, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ben WebbBYU

One of the characteristics observed in real networks is that, as a network's topology evolves so does the network's ability to perform various complex tasks. To explain this, it has also been observed that as a network grows certain subnetworks begin to specialize the function(s) they perform. We introduce a model of network growth based on this notion of specialization and show that as a network is specialized its topology becomes increasingly modular, hierarchical, and sparser, each of which are properties observed in real networks. This model is also highly flexible in that a network can be specialized over any subset of its components. By selecting these components in various ways we find that a network's topology acquires some of the most well-known properties of real networks including the small-world property, disassortativity, power-law like degree distributions and clustering coefficients. This growth model also maintains the basic spectral properties of a network, i.e. the eigenvalues and eigenvectors associated with the network's adjacency network. This allows us in turn to show that a network maintains certain dynamic properties as the network's topology becomes increasingly complex due to specialization.

Gattaca

Series
Algebra Seminar
Time
Saturday, March 30, 2019 - 14:00 for 8 hours (full day)
Location
Atlanta
Speaker
Georgia Tech Tropical Arithmetic and Combinatorial Algebraic-geometryGeorgia Institute of Technology

This is a two day conference (March 30-31) to be held at Georgia Tech on algebraic geometry and related areas. We will have talks by Sam Payne, Eric Larson, Angelica Cueto, Rohini Ramadas, and Jennifer Balakrishnan. See https://sites.google.com/view/gattaca/home for more information.

Long-range order in random colorings and random graph homomorphisms in high dimensions

Series
Combinatorics Seminar
Time
Friday, March 29, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yinon SpinkaUniversity of British Columbia, Vancouver, Canada

Consider a uniformly chosen proper coloring with q colors of a domain in Z^d (a graph homomorphism to a clique). We show that when the dimension is much higher than the number of colors, the model admits a staggered long-range order, in which one bipartite class of the domain is predominantly colored by half of the q colors and the other bipartite class by the other half. In the q=3 case, this was previously shown by Galvin-Kahn-Randall-Sorkin and independently by Peled. The result further extends to homomorphisms to other graphs (covering for instance the cases of the hard-core model and the Widom-Rowlinson model), allowing also vertex and edge weights (positive temperature models). Joint work with Ron Peled.

Constructive regularization of the random matrix norm

Series
Stochastics Seminar
Time
Thursday, March 28, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Liza RebovaMathematics, UCLA

I will talk about the structure of large square random matrices with centered i.i.d. heavy-tailed entries (only two finite moments are assumed). In our previous work with R. Vershynin we have shown that the operator norm of such matrix A can be reduced to the optimal sqrt(n)-order with high probability by zeroing out a small submatrix of A, but did not describe the structure of this "bad" submatrix, nor provide a constructive way to find it. Now we can give a very simple description of this small "bad" subset: it is enough to zero out a small fraction of the rows and columns of A with largest L2 norms to bring its operator norm to the almost optimal sqrt(loglog(n)*n)-order, under additional assumption that the entries of A are symmetrically distributed. As a corollary, one can also obtain a constructive procedure to find a small submatrix of A that one can zero out to achieve the same regularization.
Im am planning to discuss some details of the proof, the main component of which is the development of techniques that extend constructive regularization approaches known for the Bernoulli matrices (from the works of Feige and Ofek, and Le, Levina and Vershynin) to the considerably broader class of heavy-tailed random matrices.

On the number of cliques in graphs with a forbidden clique minor

Series
Graph Theory Seminar
Time
Thursday, March 28, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fan WeiStanford University
Reed and Wood and independently Norine, Seymour, Thomas, and Wollan showed that for each $t$ there is $c(t)$ such that every graph on $n$ vertices with no $K_t$ minor has at most $c(t)n$ cliques. Wood asked in 2007 if $c(t)

Pages