Hidden symmetries of the hydrogen atom
- Series
- School of Mathematics Colloquium
- Time
- Tuesday, April 2, 2019 - 11:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- John Baez – UC Riverside – baez@math.ucr.edu
Which 3-manifolds smoothly embed in the 4-sphere? This seemingly simple question turns out to be rather subtle. Using Donaldson's theorem, we derive strong restrictions to embedding a Seifert fibered space over an orientable base surface, which in particular gives a complete classification when e > k/2, where k is the number of exceptional fibers and e is the normalized central weight. Our results point towards a couple of interesting conjectures which I'll discuss. This is joint work with Duncan McCoy.
The classical statement that there are 27 lines on every smooth cubic surface in $\mathbb{P}^3$ fails to hold under tropicalization: a tropical cubic surface in $\mathbb{TP}^3$ often contains infinitely many tropical lines. This pathology can be corrected by reembedding the cubic surface in $\mathbb{P}^{44}$ via the anticanonical bundle.
Under this tropicalization, the 27 classical lines become an arrangement of metric trees in the boundary of the tropical cubic surface in $\mathbb{TP}^{44}$. A remarkable fact is that this arrangement completely determines the combinatorial structure of the corresponding tropical cubic surface. In this talk, we will describe their metric and topological type as we move along the moduli space of tropical cubic surfaces. Time permitting, we will discuss the matroid that emerges from their tropical convex hull.
This is joint work with Anand Deopurkar.
A link in the 3-sphere is doubly slice if it is the cross-section of an unknotted 2-sphere in the 4-sphere. The double branched cover of a doubly slice link is a 3-manifold which embeds in the 4-sphere. For doubly slice Montesinos links, this produces embeddings of Seifert fibered spaces in S^4. In this pre-talk, I'll discuss a construction and an obstruction to being doubly slice.
One of the characteristics observed in real networks is that, as a network's topology evolves so does the network's ability to perform various complex tasks. To explain this, it has also been observed that as a network grows certain subnetworks begin to specialize the function(s) they perform. We introduce a model of network growth based on this notion of specialization and show that as a network is specialized its topology becomes increasingly modular, hierarchical, and sparser, each of which are properties observed in real networks. This model is also highly flexible in that a network can be specialized over any subset of its components. By selecting these components in various ways we find that a network's topology acquires some of the most well-known properties of real networks including the small-world property, disassortativity, power-law like degree distributions and clustering coefficients. This growth model also maintains the basic spectral properties of a network, i.e. the eigenvalues and eigenvectors associated with the network's adjacency network. This allows us in turn to show that a network maintains certain dynamic properties as the network's topology becomes increasingly complex due to specialization.
This is a two day conference (March 30-31) to be held at Georgia Tech on algebraic geometry and related areas. We will have talks by Sam Payne, Eric Larson, Angelica Cueto, Rohini Ramadas, and Jennifer Balakrishnan. See https://sites.google.com/view/gattaca/home for more information.
Consider a uniformly chosen proper coloring with q colors of a domain in Z^d (a graph homomorphism to a clique). We show that when the dimension is much higher than the number of colors, the model admits a staggered long-range order, in which one bipartite class of the domain is predominantly colored by half of the q colors and the other bipartite class by the other half. In the q=3 case, this was previously shown by Galvin-Kahn-Randall-Sorkin and independently by Peled. The result further extends to homomorphisms to other graphs (covering for instance the cases of the hard-core model and the Widom-Rowlinson model), allowing also vertex and edge weights (positive temperature models). Joint work with Ron Peled.
I will talk about the structure of large square random matrices with centered i.i.d. heavy-tailed entries (only two finite moments are assumed). In our previous work with R. Vershynin we have shown that the operator norm of such matrix A can be reduced to the optimal sqrt(n)-order with high probability by zeroing out a small submatrix of A, but did not describe the structure of this "bad" submatrix, nor provide a constructive way to find it. Now we can give a very simple description of this small "bad" subset: it is enough to zero out a small fraction of the rows and columns of A with largest L2 norms to bring its operator norm to the almost optimal sqrt(loglog(n)*n)-order, under additional assumption that the entries of A are symmetrically distributed. As a corollary, one can also obtain a constructive procedure to find a small submatrix of A that one can zero out to achieve the same regularization.
Im am planning to discuss some details of the proof, the main component of which is the development of techniques that extend constructive regularization approaches known for the Bernoulli matrices (from the works of Feige and Ofek, and Le, Levina and Vershynin) to the considerably broader class of heavy-tailed random matrices.