Seminars and Colloquia by Series

Legendrian Large Cables

Series
Dissertation Defense
Time
Tuesday, April 9, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Andrew McCulloughGeorgia Institute of Technology

We define the notion of a knot type having Legendrian large cables and
show that having this property implies that the knot type is not uniformly thick.
Moreover, there are solid tori in this knot type that do not thicken to a solid torus
with integer sloped boundary torus, and that exhibit new phenomena; specifically,
they have virtually overtwisted contact structures. We then show that there exists
an infinite family of ribbon knots that have Legendrian large cables. These knots fail
to be uniformly thick in several ways not previously seen. We also give a general
construction of ribbon knots, and show when they give similar such examples.

Periodic and quasi-periodic attractors of the spin-orbit dynamics of Mercury

Series
Math Physics Seminar
Time
Tuesday, April 9, 2019 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Guido GentileUniversita' di Roma 3

Please Note: Unusual time.

Mercury is entrapped in a 3:2 resonance: it rotates on its axis three times for every two revolutions it makes around the Sun. It is generally accepted that this is due to the large value of Mercury's eccentricity. However, the mathematical model commonly used to study the problem -- sometimes called the spin-orbit model -- proved not to be entirely convincing, because of the expression used for the tidal torque. Only recently, a different model for the tidal torque has been proposed, with the advantage of both being more realistic and providing a higher probability of capture into the 3:2 resonance with respect to the previous models. On the other hand, a drawback of the model is that the function describing the tidal torque is not smooth and appears as a superposition of peaks, so that both analytical and numerical computations turn out to be rather delicate. We shall present numerical and analytical results about the nature of the librations of Mercury's spin in the 3:2 resonance, as predicted by the realistic model. In particular we shall provide evidence that the librations are quasi-periodic in time, so that the very concept of resonance should be revisited. The analytical results are mainly based on perturbation theory and leave several open problems, that we shall discuss.

Heegaard Floer homology and non-zero degree maps

Series
Geometry Topology Seminar
Time
Monday, April 8, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tye LidmanNCSU

We will use Heegaard Floer homology to analyze maps between a certain family of three-manifolds akin to the Gromov norm/hyperbolic volume.  Along the way, we will study the Heegaard Floer homology of splices.  This is joint work with Cagri Karakurt and Eamonn Tweedy.

Interface of statistics and computing

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 8, 2019 - 13:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Xiaoming HuoGT ISyE

 Inference (aka predictive modeling) is in the core of many data science problems. Traditional approaches could be either statistically or computationally efficient, however not necessarily both. The existing principles in deriving these models - such as the maximal likelihood estimation principle - may have been developed decades ago, and do not take into account the new aspects of the data, such as their large volume, variety, velocity and veracity. On the other hand, many existing empirical algorithms are doing extremely well in a wide spectrum of applications, such as the deep learning framework; however they do not have the theoretical guarantee like these classical methods. We aim to develop new algorithms that are both computationally efficient and statistically optimal. Such a work is fundamental in nature, however will have significant impacts in all data science problems that one may encounter in the society. Following the aforementioned spirit, I will describe a set of my past and current projects including L1-based relaxation, fast nonlinear correlation, optimality of detectability, and nonconvex regularization. All of them integrates statistical and computational considerations to develop data analysis tools.

 

Limits of split rank two bundles on P^n

Series
Algebra Seminar
Time
Monday, April 8, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mengyuan ZhangUniversity of California, Berkeley

In this talk we discuss the following problem due to Peskine and Kollar: Let E be a flat family of rank two bundles on P^n parametrized by a smooth variety T. If E_t is isomorphic to O(a)+O(b) for general t in T, does it mean E_0 is isomorphic to O(a)+O(b) for a special point 0 in T? We construct counter-examples in over P^1 and P^2, and discuss the problem in P^3 and higher P^n.

Seifert fibered manifolds

Series
Geometry Topology Seminar Pre-talk
Time
Monday, April 8, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tye LidmanNCSU

In this talk, we will study Seifert fibered three-manifolds. While simple to define, they comprise 6 of the 8 Thurston geometries, and are an important testing ground for many questions and invariants. We will present several constructions/definitions of these manifolds and learn how to work with them explicitly.

Text-classification methods and the mathematical theory of Principal Components

Series
Dissertation Defense
Time
Monday, April 8, 2019 - 12:10 for 1.5 hours (actually 80 minutes)
Location
Skiles 202
Speaker
Jiangning ChenGeorgia Institute of Technology

We are going talk about three topics. First of all, Principal Components Analysis (PCA) as a dimension reduction technique. We investigate how useful it is for real life problems. The problem is that, often times the spectrum of the covariance matrix is wrongly estimated due to the ratio between sample space dimension over feature space dimension not being large enough. We show how to reconstruct the spectrum of the ground truth covariance matrix, given the spectrum of the estimated covariance for multivariate normal vectors. We then present an algorithm for reconstruction the spectrum in the case of sparse matrices related to text classification. 

In the second part, we concentrate on schemes of PCA estimators. Consider the problem of finding the least eigenvalue and eigenvector of ground truth covariance matrix, a famous classical estimator are due to Krasulina. We state the convergence proof of Krasulina for the least eigenvalue and corresponding eigenvector, and then find their convergence rate.

In the last part, we consider the application problem, text classification, in the supervised view with traditional Naive-Bayes method. We find out an updated Naive-Bayes method with a new loss function, which loses the unbiased property of traditional Naive-Bayes method, but obtains a smaller variance of the estimator. 

Committee:  Heinrich Matzinger (Advisor); Karim Lounici (Advisor); Ionel Popescu (school of math); Federico Bonetto (school of math); Xiaoming Huo (school of ISYE);

A topological mechanism for diffusion, with application to the elliptic restricted three body problem

Series
CDSNS Colloquium
Time
Monday, April 8, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
M. CapinskiJagiellonian University/Florida Atlantic University
We present a topological mechanism of diffusion in a priori chaotic systems. The method leads to a proof of diffusion for an explicit range of perturbation parameters. The assumptions of our theorem can be verified using interval arithmetic numerics, leading to computer assisted proofs. As an example of application we prove diffusion in the Neptune-Triton planar elliptic restricted three body problem. Joint work with Marian Gidea.

Physical Versus Mathematical Billiards: From Regular Dynamics to Chaos and Back

Series
Math Physics Seminar
Time
Monday, April 8, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
L.A.BunimovichSchool of Mathematics, Georgia Tech

Please Note: Unusual time.

In standard (mathematical) billiards a point particle moves uniformly in a billiard table with elastic reflections off the boundary. We show that in transition from mathematical billiards to physical billiards, where a finite size hard sphere moves in the same billiard table, virtually anything may happen. Namely a non-chaotic billiard may become chaotic and vice versa. Moreover, both these transitions may occur softly, i.e. for any (arbitrarily small) positive value of the radius of a physical particle, as well as by a ”hard” transition when radius of the physical particle must exceed some critical strictly positive value. Such transitions may change a phase portrait of a mathematical billiard locally as well as completely (globally). These results are somewhat unexpected because for all standard examples of billiards their dynamics remains absolutely the same after transition from a point particle to a finite size (”physical”) particle. Moreover we show that a character of dynamics may change several times when the size of the particle is increasing. This approach already demonstrated a sensational result that quantum system could be more chaotic than its classical counterpart.

Averaging in a fully coupled system with singularities

Series
Math Physics Seminar
Time
Friday, April 5, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alexander GrigoDepartment of Mathematics, University of Oklahoma

In this talk I will discuss a particular fast-slow system, and describe an averaging theorem. I will also explain how this particular slow-fast system arises in a certain problem of energy transport in an open system of interacting hard-spheres. The technical aspect involved in this is how to deal with singularities present and the fact that the dynamics is fully coupled.

Pages