Seminars and Colloquia by Series

Joint GT-UGA Seminar at GT - On the topological expressiveness of neural networks

Series
Geometry Topology Seminar
Time
Monday, April 22, 2019 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Eli GrigsbyBoston College

One can regard a (trained) feedforward neural network as a particular type of function , where  is a (typically high-dimensional) Euclidean space parameterizing some data set, and the value  of the function on a data point  is the probability that the answer to a particular yes/no question is "yes." It is a classical result in the subject that a sufficiently complex neural network can approximate any function on a bounded set. Last year, J. Johnson proved that universality results of this kind depend on the architecture of the neural network (the number and dimensions of its hidden layers). His argument was novel in that it provided an explicit topological obstruction to representability of a function by a neural network, subject to certain simple constraints on its architecture. I will tell you just enough about neural networks to understand how Johnson's result follows from some very simple ideas in piecewise linear geometry. Time permitting, I will also describe some joint work in progress with K. Lindsey aimed at developing a general theory of how the architecture of a neural network constrains its topological expressiveness.

Joint GT-UGA Seminar at GT - Simply-connected, spineless 4-manifolds

Series
Geometry Topology Seminar
Time
Monday, April 22, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Adam LevineDuke University
Given an m-dimensional manifold M that is homotopy equivalent to an n-dimensional manifold N (where n4, Cappell and Shaneson showed that if M is simply-connected or if m is odd, then it contains a spine. In contrast, I will show that there exist smooth, compact, simply-connected 4-manifolds which are homotopy equivalent to the 2-sphere but do not contain a spine (joint work with Tye Lidman). I will also discuss some related results about PL concordance of knots in homology spheres (joint with Lidman and Jen Hom).

Near-Best Adaptive Approximation on Conforming Simplicial Partitions

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 22, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter BinevUniversity of South Carolina

The talk presents an extension for high dimensions of an idea from a recent result concerning near optimal adaptive finite element methods (AFEM). The usual adaptive strategy for finding conforming partitions in AFEM is ”mark → subdivide → complete”. In this strategy any element can be marked for subdivision but since the resulting partition often contains hanging nodes, additional elements have to be subdivided in the completion step to get a conforming partition. This process is very well understood for triangulations received via newest vertex bisection procedure. In particular, it is proven that the number of elements in the final partition is limited by constant times the number of marked cells. This motivated us [B., Fierro, Veeser, in preparation] to design a marking procedure that is limited only to cells of the partition whose subdivision will result in a conforming partition and therefore no completion step is necessary. We also proved that this procedure is near best in terms of both error of approximation and complexity. This result is formulated in terms of tree approximations and opens the possibility to design similar algorithms in high dimensions using sparse occupancy trees introduced in [B., Dahmen, Lamby, 2011]. The talk describes the framework of approximating high dimensional data using conforming sparse occupancy trees.

Polynomial Decompositions in Machine Learning

Series
Algebra Seminar
Time
Monday, April 22, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joe KileelPrinceton University

This talk will be about polynomial decompositions that are relevant in machine learning.  I will start with the well-known low-rank symmetric tensor decomposition, and present a simple new algorithm with local convergence guarantees, which seems to handily outperform the state-of-the-art in experiments.  Next I will consider a particular generalization of symmetric tensor decomposition, and apply this to estimate subspace arrangements from very many, very noisy samples (a regime in which current subspace clustering algorithms break down).  Finally I will switch gears and discuss representability of polynomials by deep neural networks with polynomial activations.  The various polynomial decompositions in this talk motivate questions in commutative algebra, computational algebraic geometry and optimization.  The first part of this talk is joint with Emmanuel Abbe, Tamir Bendory, Joao Pereira and Amit Singer, while the latter part is joint with Matthew Trager.

Exponential decay of quantum conditional information in thermal states of 1D short-ranged gapped Hamiltonians.

Series
Math Physics Seminar
Time
Friday, April 19, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Pavel SvetlichnyySchool of Physics, GaTeach

I will talk about a conjecture that in Gibbs states of one-dimensional spin chains with short-ranged gapped Hamiltonians the quantum conditional mutual information (QCMI) between the parts of the chain decays exponentially with the length of separation between said parts. The smallness of QCMI enables efficient representation of these states as tensor networks, which allows their efficient construction and fast computation of global quantities, such as entropy. I will present the known partial results on the way of proving of the conjecture and discuss the probable approaches to the proof and the obstacles that are encountered.

Nonlinear Mechanics of Accretion

Series
Geometry Topology Working Seminar
Time
Friday, April 19, 2019 - 14:00 for 2 hours
Location
Skiles 006
Speaker
Arash Yavari and Fabio Sozio, School of Civil and Environmental EngineeringGeorgia Tech
We formulate a geometric nonlinear theory of the mechanics of accretion. In this theory the material manifold of an accreting body is represented by a time-dependent Riemannian manifold with a time-independent metric that at each point depends on the state of deformation at that point at its time of attachment to the body, and on the way the new material isadded to the body. We study the incompatibilities induced by accretion through the analysis of the material metric and its curvature in relation to the foliated structure of the accreted body. Balance laws are discussed and the initial-boundary value problem of accretion is formulated. The particular cases where the growth surface is either fixed or traction-free are studied and some analytical results are provided. We numerically solve several accretion problems and calculate the residual stresses in nonlinear elastic bodies induced from accretion.

TBA by N Demni

Series
Stochastics Seminar
Time
Thursday, April 18, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nizar DemniUniversity of Marseille

Independent set permutations, and matching permutations

Series
Graph Theory Seminar
Time
Thursday, April 18, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
David GalvinUniversity of Notre Dam
To any finite real sequence, we can associate a permutation $\pi$, via: $\pi(k)$ is the index of the $k$th smallest element of the sequence. This association was introduced in a 1987 paper of Alavi, Malde, Schwenk and Erd\H{o}s, where they used it to study the possible patterns of rises and falls that can occur in the matching sequence of a graph (the sequence whose $k$th term is the number of matchings of size $k$), and in the independent set sequence. The main result of their paper was that {\em every} permutation can arise as the ``independent set permutation'' of some graph. They left open the following extremal question: for each $n$, what is the smallest order $m$ such that every permutation of $[n]$ can be realized as the independent set permutation of some graph of order at most $m$? We answer this question. We also improve Alavi et al.'s upper bound on the number of permutations that can be realized as the matching permutation of some graph. There are still many open questions in this area. This is joint work with T. Ball, K. Hyry and K. Weingartner, all at Notre Dame.

Caterpillars in Erods-Hajnal

Series
Graph Theory Working Seminar
Time
Wednesday, April 17, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michail SarantisGeorgia Tech

The well known Erdos-Hajnal Conjecture states that every graph has the Erdos-Hajnal (EH) property. That is, for every $H$, there exists a $c=c(H)>0$ such that every graph $G$ with no induced copy of $H$ has the property $hom(G):=max\{\alpha(G),\omega(G)\}\geq |V(G)|^{c}$. Let $H,J$ be subdivisions of caterpillar graphs. Liebenau, Pilipczuk, Seymour and Spirkl proved that the EH property holds if we forbid both $H$ and $\overline{J}.$ We will discuss the proof of this result.

Pages