Seminars and Colloquia by Series

Strong Chormatic Index on Graphs with Maximal Degree Four

Series
Graph Theory Working Seminar
Time
Wednesday, October 3, 2018 - 16:30 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
James AndersonGeorgia Tech
Erdős and Nešetřil conjectured in 1985 that every graph with maximum degree Δ can be strong edge colored using at most (5/4)Δ^2 colors. In this talk we discuss recent progress made in the case of Δ=4, and go through the method used to improve the upper bound to 21 colors, one away from the conjectured 20.

Localization of orthonormal functions in spectral clusters

Series
Math Physics Seminar
Time
Wednesday, October 3, 2018 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Rupert FrankLMU Munich/Caltech
We generalize the Lp spectral cluster bounds of Sogge for the Laplace-Beltrami operator on compact Riemannian manifolds to systems of orthonormal functions. We show that these bounds are optimal on any manifold in a very strong sense. These spectral cluster bounds follow from Schatten-type bounds on oscillatory integral operators and their optimality follows by semi-classical analysis.

A1-enumerative geometry

Series
Geometry Topology Student Seminar
Time
Wednesday, October 3, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Stephen MckeanGaTech
Many problems in algebraic geometry involve counting solutions to geometric problems. The number of intersection points of two projective planar curves and the number of lines on a cubic surface are two classical problems in this enumerative geometry. Using A1-homotopy theory, one can gain new insights to old enumerative problems. We will outline some results in A1-enumerative geometry, including the speaker’s current work on Bézout’s Theorem.

The Local L^p Brunn-Minkowski inequality for p<1

Series
High Dimensional Seminar
Time
Wednesday, October 3, 2018 - 12:55 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xingyu ZhuGeorgia Institute of Technology

The n-dimensional L^p Brunn-Minkowski inequality for p<1 , in particular the log-Brunn-Minkowski inequality, is proposed by Boroczky-Lutwak-Yang-Zhang in 2013, based on previous work of Firey and Lutwak . When it came out, it promptly became the major problem in convex geometry. Although some partial results on some specific convex sets are shown to be true, the general case stays wide open. In this talk I will present a breakthrough on this conjecture due to E. Milman and A Kolesnikov, where we can obeserve a beautiful interaction of PDE, operator theory, Riemannian geometry and all sorts of best constant estimates. They showed the validity of the local version of this inequality for orgin-symmtric convex sets with a C^{2} smooth boundary and strictly postive mean curvature, and for p between 1-c/(n^{3/2}) and 1. Their infinitesimal formulation of this inequality reveals the deep connection with the poincare-type inequalities. It turns out, after a sophisticated transformation, the desired inequality follows from an estimate of the universal constant in Poincare inequality on convex sets.

Two results about points on surfaces

Series
Research Horizons Seminar
Time
Wednesday, October 3, 2018 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Justin LanierGeorgia Tech
After briefly describing my research interests, I’ll speak on two results that involve points moving around on surfaces. The first result shows how to “hear the shape of a billiard table.” A point bouncing around a polygon encodes a sequence of edges. We show how to recover geometric information about the table from the collection of all such bounce sequences. This is joint work with Calderon, Coles, Davis, and Oliveira. The second result answers the question, “Given n distinct points in a closed ball, when can a new point be added in a continuous fashion?” We answer this question for all values of n and for all dimensions. Our results generalize the Brouwer fixed point theorem, which gives a negative answer when n=1. This is joint work with Chen and Gadish.

Joint GT-UGA Seminar at GT - The ribbon genus of a knotted surface

Series
Geometry Topology Seminar
Time
Monday, October 1, 2018 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jason JosephUGA
The knot group has played a central role in classical knot theory and has many nice properties, some of which fail in interesting ways for knotted surfaces. In this talk we'll introduce an invariant of knotted surfaces called ribbon genus, which measures the failure of a knot group to 'look like' a classical knot group. We will show that ribbon genus is equivalent to a property of the group called Wirtinger deficiency. Then we will investigate some examples and conclude by proving a connection with the second homology of the knot group.

Joint GT-UGA Seminar at GT - A contact Fukaya category

Series
Geometry Topology Seminar
Time
Monday, October 1, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lenny NgDuke University
I'll describe a way to construct an A-infinity category associated to a contact manifold, analogous to a Fukaya category for a symplectic manifold. The objects of this category are Legendrian submanifolds equipped with augmentations. Currently we're focusing on standard contact R^3 but we're hopeful that we can extend this to other contact manifolds. I'll discuss some properties of this contact Fukaya category, including generation by unknots and a potential application to proving that ``augmentations = sheaves''. This is joint work in progress with Tobias Ekholm and Vivek Shende.

Faster convex optimization with higher-order smoothness via rescaled and accelerated gradient flows

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 1, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dr. Andre WibisonoGeorgia Tech CS
Accelerated gradient methods play a central role in optimization, achieving the optimal convergence rates in many settings. While many extensions of Nesterov's original acceleration method have been proposed, it is not yet clear what is the natural scope of the acceleration concept. In this work, we study accelerated methods from a continuous-time perspective. We show there is a Bregman Lagrangian functional that generates a large class of accelerated methods in continuous time, including (but not limited to) accelerated gradient descent, its non-Euclidean extension, and accelerated higher-order gradient methods. We show that in continuous time, these accelerated methods correspond to traveling the same curve in spacetime at different speeds. This is in contrast to the family of rescaled gradient flows, which correspond to changing the distance in space. We show how to implement both the rescaled and accelerated gradient methods as algorithms in discrete time with matching convergence rates. These algorithms achieve faster convergence rates for convex optimization under higher-order smoothness assumptions. We will also discuss lower bounds and some open questions. Joint work with Ashia Wilson and Michael Jordan.

A simple proof of a generalization of a Theorem by C.L. Siegel (Part II) (CANCELED)

Series
Dynamical Systems Working Seminar
Time
Friday, September 28, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 156
Speaker
Adrian P. BustamanteGeorgia Tech
In this talk I will present a proof of a generalization of a theorem by Siegel, about the existence of an analytic conjugation between an analytic map, $f(z)=\Lambda z +\hat{f}(z)$, and a linear map, $\Lambda z$, in $\mathbb{C}^n$. This proof illustrates a standar technique used to deal with small divisors problems. I will be following the work of E. Zehnder. This is a continuation of last week talk.

Pages