Seminars and Colloquia by Series

The interaction of gaps with the boundary in dimer systems --- a heat flow conjecture

Series
Math Physics Seminar
Time
Friday, March 15, 2019 - 14:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mihai CiucuMathematics Department, Indiana University
We consider a triangular gap of side two in a 90 degree angle on the triangular lattice with mixed boundary conditions: a constrained, zig-zag boundary along one side, and a free lattice line boundary along the other. We study the interaction of the gap with thecorner as the rest of the angle is completely filled with lozenges. We show that the resulting correlation is governed by the product of the distances between the gap and its three images in the sides of the angle. This, together with a few other results we worked out previously, provides evidence for a unified way of understanding the interaction of gaps with the boundary under mixed boundary conditions, which we present as a conjecture. Our conjecture is phrased in terms of the steady state heat flow problem in a uniform block of material in which there are a finite number of heat sources and sinks. This new physical analogy is equivalent in the bulk to the electrostatic analogy we developed in previous work, but arises as the correct one for the correlation with the boundary.The starting point for our analysis is an exact formula we prove for the number of lozenge tilings of certain trapezoidal regions with mixed boundary conditions, which is equivalent to a new, multi-parameter generalization of a classical plane partition enumeration problem (that of enumerating symmetric, self-complementary plane partitions).

Schubert Galois Groups

Series
Algebra Seminar
Time
Friday, March 15, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Frank SottileTexas A&M
Problems from enumerative geometry have Galois groups. Like those from field extensions, these Galois groups reflect the internal structure of the original problem. The Schubert calculus is a class of problems in enumerative geometry that is very well understood, and may be used as a laboratory to study new phenomena in enumerative geometry.I will discuss this background, and sketch a picture that is emerging from a sustained study of Schubert problems from the perspective of Galois theory. This includes a conjecture concerning the possible Schubert Galois groups, a partial solution of the inverse Galois problem, as well as glimpses of the outline of a possible classification of Schubert problems for their Galois groups.

Divisors on metric graphs and constructing tropicalizations of Mumford curves

Series
Student Algebraic Geometry Seminar
Time
Friday, March 15, 2019 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Trevor GunnGeorgia Tech
I will introduce briefly the notion of Berkovich analytic spaces and certain metric graphs associated to them called the skeleton. Then we will describe divisors on metric graphs and a lifting theorem that allows us to find tropicalizations of curves in P^3. This is joint work with Philipp Jell.

Clustered coloring for old coloring conjectures

Series
ACO Alumni Lecture
Time
Thursday, March 14, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chun-Hung LiuTexas A&M

Hadwiger (Hajos and Gerards and Seymour, respectively) conjectured that the vertices of every graph with no K_{t+1} minor (topological minor and odd minor, respectively) can be colored with t colors such that any pair of adjacent vertices receive different colors. These conjectures are stronger than the Four Color Theorem and are either wide open or false in general. A weakening of these conjectures is to consider clustered coloring which only requires every monochromatic component to have bounded size instead of size 1. It is known that t colors are still necessary for the clustered coloring version of those three conjectures. Joint with David Wood, we prove a series of tight results about clustered coloring on graphs with no subgraph isomorphic to a fixed complete bipartite graph. These results have a number of applications. In particular, they imply that the clustered coloring version of Hajos' conjecture is true for bounded treewidth graphs in a stronger sense: K_{t+1} topological minor free graphs of bounded treewidth are clustered t-list-colorable. They also lead to the first linear upper bound for the clustered coloring version of Hajos' conjecture and the currently best upper bound for the clustered coloring version of the Gerards-Seymour conjecture.

TBA by

Series
Stochastics Seminar
Time
Thursday, March 14, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
TBASOM, GaTech

Strong edge colorings and edge cuts

Series
Graph Theory Working Seminar
Time
Wednesday, March 13, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
James AndersonGeorgia Tech
Erdős and Nešetřil conjectured in 1985 that every graph with maximum degree Δ can be strong edge colored using at most 5/4 Δ^2 colors. The conjecture is still open for Δ=4. We show the conjecture is true when an edge cut of size 1 or 2 exists, and in certain cases when an edge cut of size 4 or 3 exists.

The Bishop-Phelps-Bolloba ́s Property for Numerical Radius in the space of summable sequnces

Series
Analysis Seminar
Time
Wednesday, March 13, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Olena KozhushkinaUrsinus college
The Bishop-Phelps-Bolloba ́s property for numerical radius says that if we have a point in the Banach space and an operator that almost attains its numerical radius at this point, then there exist another point close to the original point and another operator close to the original operator, such that the new operator attains its numerical radius at this new point. We will show that the set of bounded linear operators from a Banach space X to X has a Bishop-Phelps-Bolloba ́s property for numerical radius whenever X is l1 or c0. We will also discuss some constructive versions of the Bishop-Phelps- Bolloba ́s theorem for l1(C), which are an essential tool for the proof of this result.

Eulerian dynamics with alignment interactions

Series
PDE Seminar
Time
Tuesday, March 12, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Changhui TanUniversity of South Carolina
The Euler-Alignment system arises as a macroscopic representation of the Cucker-Smale model, which describes the flocking phenomenon in animal swarms. The nonlinear and nonlocal nature of the system bring challenges in studying global regularity and long time behaviors. In this talk, I will discuss the global wellposedness of the Euler-Alignment system with three types of nonlocal alignment interactions: bounded, strongly singular, and weakly singular interactions. Different choices of interactions will lead to different global behaviors. I will also discuss interesting connections to some fluid dynamics systems, including the fractional Burgers equation, and the aggregation equation.

Pages