Seminars and Colloquia by Series

Computing Heegaard Floer homology by factoring mapping classes

Series
Geometry Topology Student Seminar
Time
Wednesday, October 11, 2017 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Justin LanierGeorgia Tech
We will discuss the mapping class groupoid, how it is generated by handle slides, and how factoring in the mapping class groupoid can be used to compute Heegaard Floer homology. This talk is based on work by Lipshitz, Ozsvath, and Thurston.

AWM lunch talk- Partition Identities Related to Stanley's Theorem

Series
Other Talks
Time
Wednesday, October 11, 2017 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Maxie SchmidtGeorgia Tech

Please Note: Lunch will be provided. The talk will be the first 25 minutes of the hour and then will be followed by discussion.

In a recent article to appear in the American Mathematical Mothly next year, we use the Lambert series generating function for Euler’s totient function to introduce a new identity for the number of 1’s in the partitions of n. New expansions for Euler’s partition function p(n) are derived in this context. These surprising new results connect the famous classical totient function from multiplicative number theory to the additive theory of partitions. We will define partitions and several variants of Euler's partition function in the talk to state our new results.

Small subgraph counts in random graphs: a survey

Series
Combinatorics Seminar
Time
Friday, October 6, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matas SileikisCharles University Prague
Given a (fixed) graph H, let X be the number of copies of H in the random binomial graph G(n,p). In this talk we recall the results on the asymptotic behaviour of X, as the number n of vertices grows and pis allowed to depend on. In particular we will focus on the problem of estimating probability that X is significantly larger than its expectation, which earned the name of the 'infamous upper tail'.

An infinite dimensional hamiltonian dynamical system from MFG theory II (CANCELED, SEE SUBSTITUTE TALK)

Series
Dynamical Systems Working Seminar
Time
Friday, October 6, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 154
Speaker
Sergio MayorgaGeorgia Tech
We will look at a system of hamiltonian equations on the torus, with an initial condition in momentum and a terminal condition in position, that arises in mean field game theory. Existence of and uniqueness of solutions will be shown, and a few remarks will be made in regard to its connection to the minimization problem of a cost functional. This is the second part of lasrt week's talk.

A Stochastic Approach to Shortcut Bridging in Programmable Matter

Series
ACO Student Seminar
Time
Friday, October 6, 2017 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josh DaymudeArizona State University/GaTech theory lab
In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called particles with limited memory and communication self-organize to solve system-wide problems of movement, coordination, and configuration. In this paper, we consider stochastic, distributed, local, asynchronous algorithms for 'shortcut bridging', in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost of the bridge. Army ants of the genus Eticon have been observed exhibiting a similar behavior in their foraging trails, dynamically adjusting their bridges to satisfy an efficiency tradeoff using local interactions. Using techniques from Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being 'shortcut' similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm with the army ant bridging behavior. Our work presents a plausible explanation of how convergence to globally optimal configurations can be achieved via local interactions by simple organisms (e.g., ants) with some limited computational power and access to random bits. The proposed algorithm demonstrates the robustness of the stochastic approach to algorithms for programmable matter, as it is a surprisingly simple extension of a stochastic algorithm for compression. This is joint work between myself/my professor Andrea Richa at ASU and Sarah Cannon and Prof. Dana Randall here at GaTech.

Partitioning sparse random graphs: connections with mean-field spin glasses

Series
Stochastics Seminar
Time
Thursday, October 5, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Subhabrata SenMIT / Microsoft
The study of graph-partition problems such as Maxcut, max-bisection and min-bisection have a long and rich history in combinatorics and theoretical computer science. A recent line of work studies these problems on sparse random graphs, via a connection with mean field spin glasses. In this talk, we will look at this general direction, and derive sharp comparison inequalities between cut-sizes on sparse Erdös-Rényi and random regular graphs. Based on joint work with Aukosh Jagannath.

Two-three linked graphs

Series
Graph Theory Seminar
Time
Thursday, October 5, 2017 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Shijie XieMath, GT
Let G be a graph containing 5 different vertices a0, a1, a2, b1 and b2. We say that (G, a0, a1, a2, b1, b2) is feasible if G contains disjoint connected subgraphs G1, G2, such that {a0, a1, a2}⊆V(G1) and {b1, b2}⊆V(G2). In this talk, we will describe the structure of G when (G, a0, a1, a2, b1, b2) is infeasible, using frames and connectors. Joint work with Changong Li, Robin Thomas, and Xingxing Yu.

Pages