Seminars and Colloquia by Series

Matroids and Grassmannians

Series
Student Algebraic Geometry Seminar
Time
Thursday, September 20, 2018 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Trevor GunnGeorgia Tech
We will give a brief introduction to matroids with a focus on representable matroids. We will also discuss the Plücker embedding of the Grassmannian.

Efficient Network Analysis: Sparsity, Algorithms, and... Colorings!

Series
School of Mathematics Colloquium
Time
Thursday, September 20, 2018 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Blair SullivanDepartment of Computer Science, NC State University
Techniques from structural graph theory hold significant promise for designing efficient algorithms for network science. However, their real-world application has been hampered by the challenges of unrealistic structural assumptions, hidden costs in big-O notation, and non-constructive proofs. In this talk, I will survey recent results which address many of these concerns through an algorithmic pipeline for structurally sparse networks, highlighting the crucial role of certain graph colorings, along with several open problems. For example, we give empirical and model-based evidence that real-world networks exhibit a form of structural sparsity known as "bounded expansion,'' and discuss properties of several low-treedepth colorings used in efficient algorithms for this class. Based on joint works with E. Demaine, J. Kun, M. O'Brien, M. Pilipczuk, F. Reidl, P. Rossmanith, F. Sanchez Villaamil, and S. Sikdar.

Hypergraph cuts above the average

Series
Graph Theory Working Seminar
Time
Wednesday, September 19, 2018 - 16:30 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Dantong ZhuGeorgia Tech
An $r$-cut of a $k$-uniform hypergraph $H$ is a partition of the vertex set of $H$ into $r$ parts and the size of the cut is the number of edges which have a vertex in each part. A classical result of Edwards says that every $m$-edge graph has a 2-cut of size $m/2+\Omega(\sqrt{m})$, and this is best possible. In this talk we will discuss recent results on analogues of Edwards’ result and related problems in hypergraphs.

A Quantum Kac Model

Series
Math Physics Seminar
Time
Wednesday, September 19, 2018 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LossSchool of Mathematics, Georgia Tech
We introduce a quantum version of the Kac Master equation,and we explain issues like equilibria, propagation of chaos and the corresponding quantum Boltzmann equation. This is joint work with Eric Carlen and Maria Carvalho.

Sphere eversion: From Smale to Gromov II

Series
Geometry Topology Student Seminar
Time
Wednesday, September 19, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hyunki MinGeorgia Tech
In 1957, Smale proved a striking result: we can turn a sphere inside out without any singularity. Gromov in his thesis, proved a generalized version of this theorem, which had been the starting point of the h-principle. In this talk, we will prove Gromov's theorem and see applications of it.

Exponential frames and syndetic Riesz sequences

Series
Analysis Seminar
Time
Wednesday, September 19, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Marcin BownikUniversity of Oregon
In this talk we shall explore some of the consequences of the solution to the Kadison-Singer problem. In the first part of the talk we present results from a joint work with Itay Londner. We show that every subset $S$ of the torus of positive Lebesgue measure admits a Riesz sequence of exponentials $\{ e^{i\lambda x}\} _{\lambda \in \Lambda}$ in $L^2(S)$ such that $\Lambda\subset\mathbb{Z}$ is a set with gaps between consecutive elements bounded by $C/|S|$. In the second part of the talk we shall explore a higher rank extension of the main result of Marcus, Spielman, and Srivastava, which was used in the solution of the Kadison-Singer problem.

John Ellipsoid and the Center of Mass of a Convex Body

Series
High Dimensional Seminar
Time
Wednesday, September 19, 2018 - 12:55 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Han HuangUniversity of Michigan

It is natural to question whether the center of mass of a convex body $K\subset \mathbb{R}^n$ lies in its John ellipsoid $B_K$, i.e., in the maximal volume ellipsoid contained in $K$. This question is relevant to the efficiency of many algorithms for convex bodies. We obtain an unexpected negative result. There exists a convex body $K\subset \mathbb{R}^n$ such that its center of mass does not lie in the John ellipsoid $B_K$ inflated $(1-o(1))n$ times about the center of $B_K$. (Yet, if one inflate $B_K$ by a factor $n$, it contains $K$.)Moreover, there exists a polytope $P \subset \mathbb{R}^n$ with $O(n^2)$ facets whose center of mass is not contained in the John ellipsoid $B_P$ inflated $O(\frac{n}{\log(n)})$ times about the center of $B_P$.

Theory in Practice: a case study

Series
Research Horizons Seminar
Time
Wednesday, September 19, 2018 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Blair SullivanNorth Carolina State University
In this talk, we describe transforming a theoretical algorithm from structural graph theory into open-source software being actively used for real-world data analysis in computational biology. Specifically, we apply the r-dominating set algorithm for graph classes of bounded expansion in the setting of metagenome analysis. We discuss algorithmic improvements required for a practical implementation, alongside exciting preliminary biological results (on real data!). Finally, we include a brief retrospective on the collaboration process. No prior knowledge in metagenomics or structural graph theory is assumed. Based on joint work with T. Brown, D. Moritz, M. O’Brien, F. Reidl and T. Reiter.

Non-isotopic embeddings of contact manifolds.

Series
Geometry Topology Seminar
Time
Monday, September 17, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
John EtnyreGeorgia Tech
The study of transverse knots in dimension 3 has been instrumental in the development of 3 dimensional contact ge- ometry. One natural generalization of transverse knots to higher dimensions is contact submanifolds. Embeddings of one contact manifold into another satisfies an h-principle for codimension greater than 2, so we will discuss the case of codimension 2 contact embeddings. We will give the first pair of non-isotopic contact embeddings in all dimensions (that are formally isotopic).

AN INTRODUCTION TO VIRTUAL ELEMENTS IN 3D

Series
Applied and Computational Mathematics Seminar
Time
Monday, September 17, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Professor Lourenco Beirao da Veiga Università di Milano-Bicocca

Please Note: This is a joint seminar by College of Engineering and School of Math.

The Virtual Element Method (VEM), is a very recent technology introduced in [Beirao da Veiga, Brezzi, Cangiani, Manzini, Marini, Russo, 2013, M3AS] for the discretization of partial differential equations, that has shared a good success in recent years. The VEM can be interpreted as a generalization of the Finite Element Method that allows to use general polygonal and polyhedral meshes, still keeping the same coding complexity and allowing for arbitrary degree of accuracy. The Virtual Element Method makes use of local functions that are not necessarily polynomials and are defined in an implicit way. Nevertheless, by a wise choice of the degrees of freedom and introducing a novel construction of the associated stiffness matrixes, the VEM avoids the explicit integration of such shape functions. In addition to the possibility to handle general polytopal meshes, the flexibility of the above construction yields other interesting properties with respect to more standard Galerkin methods. For instance, the VEM easily allows to build discrete spaces of arbitrary C^k regularity, or to satisfy exactly the divergence-free constraint for incompressible fluids. The present talk is an introduction to the VEM, aiming at showing the main ideas of the method. We consider for simplicity a simple elliptic model problem (that is pure diffusion with variable coefficients) but set ourselves in the more involved 3D setting. In the first part we introduce the adopted Virtual Element space and the associated degrees of freedom, first by addressing the faces of the polyhedrons (i.e. polygons) and then building the space in the full volumes. We then describe the construction of the discrete bilinear form and the ensuing discretization of the problem. Furthermore, we show a set of theoretical and numerical results. In the very final part, we will give a glance at more involved problems, such as magnetostatics (mixed problem with more complex spaces interacting) and large deformation elasticity (nonlinear problem).

Pages