Seminars and Colloquia by Series

End point localization in log gamma polymer model

Series
Stochastics Seminar
Time
Thursday, March 2, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vu-Lan NguyenHarvard University
As a general fact, directed polymers in random environment are localized in the so called strong disorder phase. In this talk, based on a joint with Francis Comets, we will consider the exactly solvable model with log gamma environment,introduced recently by Seppalainen. For the stationary model and the point to line version, the localization can be expressed as the trapping of the endpoint in a potential given by an independent random walk.

Nonlinear Quantitative Photoacoustic Tomography with Two-photon Absorption

Series
Applied and Computational Mathematics Seminar
Time
Thursday, March 2, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Professor Kui Ren University of Texas, Austin
Two-photon photoacoustic tomography (TP-PAT) is a non-invasive optical molecular imaging modality that aims at inferring two-photon absorption property of heterogeneous media from photoacoustic measurements. In this work, we analyze an inverse problem in quantitative TP-PAT where we intend to reconstruct optical coefficients in a semilinear elliptic PDE, the mathematical model for the propagation of near infra-red photons in tissue-like optical media, from the internal absorbed energy data. We derive uniqueness and stability results on the reconstructions of single and multiple coefficients, and perform numerical simulations based on synthetic data to validate the theoretical analysis.

Tropical geometry of algebraic curves

Series
School of Mathematics Colloquium
Time
Thursday, March 2, 2017 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sam PayneYale University
The piecewise linear objects appearing in tropical geometry are shadows, or skeletons, of nonarchimedean analytic spaces, in the sense of Berkovich, and often capture enough essential information about those spaces to resolve interesting questions about classical algebraic varieties. I will give an overview of tropical geometry as it relates to the study of algebraic curves, touching on applications to moduli spaces.

Do Minkowski averages get progressively more convex?

Series
Analysis Seminar
Time
Wednesday, March 1, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Artem ZvavitchKent State University
For a compact subset $A$ of $R^n$ , let $A(k)$ be the Minkowski sum of $k$ copies of $A$, scaled by $1/k$. It is well known that $A(k)$ approaches the convex hull of $A$ in Hausdorff distance as $k$ goes to infinity. A few years ago, Bobkov, Madiman and Wang conjectured that the volume of $A(k)$ is non-decreasing in $k$, or in other words, that when the volume deficit between the convex hull of $A$ and $A(k)$ goes to $0$, it actually does so monotonically. While this conjecture holds true in dimension $1$, we show that it fails in dimension $12$ or greater. Then we consider whether one can have monotonicity of convergence of $A(k)$ when its non-convexity is measured in alternate ways. Our main positive result is that Schneider’s index of non-convexity of $A(k)$ converges monotonically to $0$ as $k$ increases; even the convergence does not seem to have been known before. We also obtain some results for the Hausdorff distance to the convex hull, along the way clarifying various properties of these notions of non-convexity that may be of independent interest.Joint work with Mokshay Madiman, Matthieu Fradelizi and Arnaud Marsiglietti.

Loose Legendrians in high dimensional contact manifolds (I)

Series
Geometry Topology Student Seminar
Time
Wednesday, March 1, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hyun Ki MinGeorgia Tech
There is no general h-principle for Legendrian embeddings in contact manifolds. In dimension 3, however, Legendrian knots in the complement of an overtwisted disc, which are called loose, satisfy an h-principle. We will discuss the high dimensional analog of loose knots.

Groups and randomness

Series
School of Mathematics Colloquium
Time
Tuesday, February 28, 2017 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tomasz ŁuczakAdam Mickiewicz University
The talk is meant to be a gentle introduction to a part of combinatorial topology which studies randomly generated objects. It is a rapidly developing field which combines elements of topology, geometry, and probability with plethora of interesting ideas, results and problems which have their roots in combinatorics and linear algebra.

Groups and randomness

Series
Joint School of Mathematics and ACO Colloquium
Time
Tuesday, February 28, 2017 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tomasz ŁuczakAdam Mickiewicz University
The talk is meant to be a gentle introduction to a part of combinatorial topology which studies randomly generated objects. It is a rapidly developing field which combines elements of topology, geometry, and probability with plethora of interesting ideas, results and problems which have their roots in combinatorics and linear algebra.

On Estimation in the Nonparametric Bradley Terry Model

Series
Job Candidate Talk
Time
Monday, February 27, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sabyasachi ChatterjeeUniversity of Chicago
We consider the problem of estimating pairwise comparison probabilities in a tournament setting after observing every pair of teams play with each other once. We assume the true pairwise probability matrix satisfies a stochastic transitivity condition which is popular in the Social Sciences.This stochastic transitivity condition generalizes the ubiquitous Bradley- Terry model used in the ranking literature. We propose a computationally efficient estimator for this problem, borrowing ideas from recent work on Shape Constrained Regression. We show that the worst case rate of our estimator matches the best known rate for computationally tractable estimators. Additionally we show our estimator enjoys faster rates of convergence for several sub parameter spaces of interest thereby showing automatic adaptivity. We also study the missing data setting where only a fraction of all possible games are observed at random.

A Fast Algorithm for Elastic Shape Distances Between Closed Planar Curves

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 27, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Gunay Dogan National Institute of Standards and Technology
For many problems in science and engineering, one needs to quantitatively compare shapes of objects in images, e.g., anatomical structures in medical images, detected objects in images of natural scenes. One might have large databases of such shapes, and may want to cluster, classify or compare such elements. To be able to perform such analyses, one needs the notion of shape distance quantifying dissimilarity of such entities. In this work, we focus on the elastic shape distance of Srivastava et al. [PAMI, 2011] for closed planar curves. This provides a flexible and intuitive geodesic distance measure between curve shapes in an appropriate shape space, invariant to translation, scaling, rotation and reparametrization. Computing this distance, however, is computationally expensive. The original algorithm proposed by Srivastava et al. using dynamic programming runs in cubic time with respect to the number of nodes per curve. In this work, we propose a new fast hybrid iterative algorithm to compute the elastic shape distance between shapes of closed planar curves. The asymptotic time complexity of our iterative algorithm is O(N log(N)) per iteration. However, in our experiments, we have observed almost a linear trend in the total running times depending on the type of curve data.

Southeast Geometry Seminar

Series
Other Talks
Time
Sunday, February 26, 2017 - 08:55 for 8 hours (full day)
Location
Skiles 006
Speaker
six speakers on topics in geometryfrom various universities
Mozghan Entekhabi (Wichita State University) Radial Limits of Bounded Nonparametric Prescribed Mean Curvature Surfaces ; Miyuki Koiso (Kyushu University) Stability and bifurcation for surfaces with constant mean curvature ; Vladimir Oliker (Emory University) Freeform lenses, Jacobian equations, and supporting quadric method(SQM) ; Sungho Park (Hankuk University of Foreign Studies) Circle-foliated minimal and CMC surfaces in S^3 ; Yuanzhen Shao (Purdue University) Degenerate and singular elliptic operators on manifolds with singularities ; Ray Treinen (Texas State University) Surprising non-uniqueness for the 2D floating ball ; See http://www.math.uab.edu/sgs/ for abstracts and further details.

Pages