Seminars and Colloquia by Series

Persistence as a spectral property

Series
Analysis Seminar
Time
Wednesday, March 29, 2017 - 02:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Shahaf NitzanGeorgia Tech
A Gaussian stationary sequence is a random function f: Z --> R, for which any vector (f(x_1), ..., f(x_n)) has a centered multi-normal distribution and whose distribution is invariant to shifts. Persistence is the event of such a random function to remain positive on a long interval [0,N]. Estimating the probability of this event has important implications in engineering , physics, and probability. However, though active efforts to understand persistence were made in the last 50 years, until recently, only specific examples and very general bounds were obtained. In the last few years, a new point of view simplifies the study of persistence, namely - relating it to the spectral measure of the process. In this talk we will use this point of view to study the persistence in cases where the spectral measure is 'small' or 'big' near zero. This talk is based on Joint work with Naomi Feldheim and Ohad Feldheim.

(-1)-homogeneous solutions of stationary incompressible Navier-Stokes equations with singular rays

Series
PDE Seminar
Time
Tuesday, March 28, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xukai YanRutgers University
In 1944, L.D. Landau first discovered explicit (-1)-homogeneous solutions of 3-d stationary incompressible Navier-Stokes equations (NSE) with precisely one singularity at the origin, which are axisymmetric with no swirl. These solutions are now called Landau solutions. In 1998 G. Tian and Z. Xin proved that all solutions which are (-1) homogeneous, axisymmetric with one singularity are Landau solutions. In 2006 V. Sverak proved that with just the (-1)-homogeneous assumption Landau solutions are the only solutions with one singularity. He also proved that there are no such solutions in dimension greater than 3. Our work focuses on the (-1)-homogeneous solutions of 3-d incompressible stationary NSE with finitely many singularities on the unit sphere.In this talk we will first classify all (-1)-homogeneous axisymmetric no-swirl solutions of 3-d stationary incompressible NSE with one singularity at the south pole on the unit sphere as a two dimensional solution surface. We will then present our results on the existence of a one parameter family of (-1)-homogeneous axisymmetric solutions with non-zero swirl and smooth on the unit sphere away from the south pole, emanating from the two dimensional surface of axisymmetric no-swirl solutions. We will also present asymptotic behavior of general (-1)-homogeneous axisymmetric solutions in a cone containing the south pole with a singularity at the south pole on the unit sphere. We also constructed families of solutions smooth on the unit sphere away from the north and south poles.This is a joint work with Professor Yanyan Li and Li Li.

Persistence of translation symmetry in the BCS model with radial pair interaction

Series
Math Physics Seminar
Time
Tuesday, March 28, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alissa GeisingerUniversity of Tuebingen, Germany
We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. For this purpose, we first introduce the full BCS functional and the translation invariant BCS functional. Our main result states that theminimizers of the full BCS functional coincide with the minimizers of the translation invariant BCS functional for temperatures in the aforementioned interval. In the case of vanishing angular momentum our results translate to the three dimensional case. Finally, we will explain the strategy and main ideas of the proof. This is joint work with Andreas Deuchert, Christian Hainzl and Michael Loss.

Algebraic and Computational Aspects of Tensors

Series
Algebra Seminar
Time
Monday, March 27, 2017 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ke YeUniversity of Chicago
Abstract: Tensors are direct generalizations of matrices. They appear in almost every branch of mathematics and engineering. Three of the most important problems about tensors are: 1) compute the rank of a tensor 2) decompose a tensor into a sum of rank one tensors 3) Comon’s conjecture for symmetric tensors. In this talk, I will try to convince the audience that algebra can be used to study tensors. Examples for this purpose include structured matrix decomposition problem, bilinear complexity problem, tensor networks states, Hankel tensors and tensor eigenvalue problems. In these examples, I will explain how algebraic tools are used to answer the three problems mentioned above.

Computing Integer Partitions

Series
Combinatorics Seminar
Time
Monday, March 27, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Damir YeliussizovUCLA
I will talk about the problem of computing the number of integer partitions into parts lying in some integer sequence. We prove that for certain classes of infinite sequences the number of associated partitions of an input N can be computed in time polynomial in its bit size, log N. Special cases include binary partitions (i.e. partitions into powers of two) that have a key connection with Cayley compositions and polytopes. Some questions related to algebraic differential equations for partition sequences will also be discussed. (This is joint work with Igor Pak.)

Differential Algebra of Cubic Graphs

Series
Geometry Topology Seminar
Time
Monday, March 27, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Roger CasalsMIT
In this talk we associate a combinatorial dg-algebra to a cubic planar graph. This algebra is defined by counting binary sequences, which we introduce, and we shall provide explicit computations. From there, we study the Legendrian surfaces behind these combinatorial constructions, including Legendrian surgeries and the count of Morse flow trees, and discuss the proof of the correspondence between augmentations and constructible sheaves for this class of Legendrians.

Latent voter model on Locally Tree Like Random graphs

Series
IMPACT Distinguished Lecture
Time
Friday, March 17, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rick DurettDuke University
In the latent voter model, which models the spread of a technology through a social network, individuals who have just changed their choice have a latent period, which is exponential with rate λ during which they will not buy a new device. We study site and edge versions of this model on random graphs generated by a configuration model in which the degrees d(x) have 3 ≤ d(x) ≤ M. We show that if the number of vertices n → ∞ and log n << λn << n then the latent voter model has a quasi-stationary state in which each opinion has probability ≈ 1/2 and persists in this state for a time that is ≥ nm for any m <∞. Thus, even a very small latent period drastically changes the behavior of the voter model.

Lagrangian Floer Theory II

Series
Geometry Topology Working Seminar
Time
Friday, March 17, 2017 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
John EtnyreGeorgia Tech

Please Note: This will be a 1.5 hour (maybe slightly longer) seminar.

Following up on the previous series of talks we will show how to construct Lagrangian Floer homology and discuss it properties.

Pages