Seminars and Colloquia by Series

Revisiting Averaging Theory for Control of Biologically Inspired Robots

Series
GT-MAP Seminar
Time
Friday, April 14, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Patricio A. VelaGT ECE
Robotic locomotive mechanisms designed to mimic those of their biological counterparts differ from traditionally engineered systems. Though both require overcoming non-holonomic properties of the interaction dynamics, the nature of their non-holonomy differs. Traditionally engineered systems have more direct actuation, in the sense that control signals directly lead to generated forces or torques, as in the case of rotors, wheels, motors, jets/ducted fans, etc. In contrast, the body/environment interactions that animals exploit induce forces or torque that may not always align with their intended direction vector.Through periodic shape change animals are able to effect an overall force or torque in the desired direction. Deriving control equations for this class of robotic systems requires modelling the periodic interaction forces, then applying averaging theory to arrive at autonomous nonlinear control models whose form and structure resembles that of traditionally engineered systems. Once obtained, classical nonlinear control methods may be applied, though some attention is required since the control can no longer apply at arbitrary time scales.The talk will cover the fundamentals of averaging theory and efforts to identify a generalized averaging strategy capable of recovering the desired control equations. Importantly, the strategy reverses the typical approach to averaged expansions, which significantly simplifies the procedure. Doing so provides insights into feedback control strategies available for systems controlled through time-periodic signals.

Connectivity of the set of triangulations of a 3- or 4-manifold

Series
Geometry Topology Seminar
Time
Friday, April 14, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Henry SegermanOklahoma State University
This is joint work with Hyam Rubinstein. Matveev and Piergallini independently show that the set of triangulations of a three-manifold is connected under 2-3 and 3-2 Pachner moves, excepting triangulations with only one tetrahedron. We give a more direct proof of their result which (in work in progress) allows us to extend the result to triangulations of four-manifolds.

On concentration in discrete random processes

Series
ACO Student Seminar
Time
Friday, April 14, 2017 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lutz WarnkeGeorgia Institute of Technology
The concentration of measure phenomenon is of great importance in probabilistic combinatorics and theoretical computer science. For example, in the theory of random graphs, we are often interested in showing that certain random variables are concentrated around their expected values. In this talk we consider a variation of this theme, where we are interested in proving that certain random variables remain concentrated around their expected trajectories as an underlying random process (or random algorithm) evolves. In particular, we shall give a gentle introduction to the differential equation method popularized by Wormald, which allows for proving such dynamic concentration results. This method systematically relates the evolution of a given random process with an associated system of differential equations, and the basic idea is that the solution of the differential equations can be used to approximate the dynamics of the random process. If time permits, we shall also sketch a new simple proof of Wormalds method.

Graph Structure in Polynomial Ideals: Chordal Networks

Series
Algebra Seminar
Time
Friday, April 14, 2017 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Diego CifuentesMIT
We introduce a novel representation of structured polynomial ideals, which we refer to as chordal networks. The sparsity structure of a polynomial system is often described by a graph that captures the interactions among the variables. Chordal networks provide a computationally convenient decomposition of a polynomial ideal into simpler (triangular) polynomial sets, while preserving its underlying graphical structure. We show that many interesting families of polynomial ideals admit compact chordal network representations (of size linear in the number of variables), even though the number of components could be exponentially large. Chordal networks can be computed for arbitrary polynomial systems, and they can be effectively used to obtain several properties of the variety, such as its dimension, cardinality, equidimensional components, and radical ideal membership. We apply our methods to examples from algebraic statistics and vector addition systems; for these instances, algorithms based on chordal networks outperform existing techniques by orders of magnitude.

A career in mathematics research outside of the academy

Series
Professional Development Seminar
Time
Thursday, April 13, 2017 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Amanda StreibIDA/CCS
A conversation with Amanda Streib, a 2012 GT ACO PhD, who is now working at the Institute for Defense Analyses - Center for Computing Sciences (IDA/CCS) and who was previously a National Research Council (NRC) postdoc at the Applied and Computational Mathematics Division of the National Institute of Standards and Technology (NIST).

Some Remarks on Stein's Method

Series
Stochastics Seminar
Time
Thursday, April 13, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Christian HoudréSchool of Mathematics, Georgia Institute of Technology
I will revisit the classical Stein's method, for normal random variables, as well as its version for Poisson random variables and show how both (as well as many other examples) can be incorporated in a single framework.

Statistical Inference for Some Risk Measures

Series
Dissertation Defense
Time
Wednesday, April 12, 2017 - 14:30 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Yanxi HouGeorgia Institute of Technology
This thesis addresses asymptotic behaviors and statistical inference methods for several newly proposed risk measures, including relative risk and conditional value-at-risk. These risk metrics are intended to measure the tail risks and/or systemic risk in financial markets. We consider conditional Value-at-Risk based on a linear regression model. We extend the assumptions on predictors and errors of the model, which make the model more flexible for the financial data. We then consider a relative risk measure based on a benchmark variable. The relative risk measure is proposed as a monitoring index for systemic risk of financial system. We also propose a new tail dependence measure based on the limit of conditional Kendall’s tau. The new tail dependence can be used to distinguish between the asymptotic independence and dependence in extreme value theory. For asymptotic results of these measures, we derive both normal and Chi-squared approximations. These approximations are a basis for inference methods. For normal approximation, the asymptotic variances are too complicated to estimate due to the complex forms of risk measures. Quantifying uncertainty is a practical and important issue in risk management. We propose several empirical likelihood methods to construct interval estimation based on Chi-squared approximation.

Falconer type theorems for simplices

Series
Analysis Seminar
Time
Wednesday, April 12, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Eyvi PalssonVirginia Tech
Finding and understanding patterns in data sets is of significant importance in many applications. One example of a simple pattern is the distance between data points, which can be thought of as a 2-point configuration. Two classic questions, the Erdos distinct distance problem, which asks about the least number of distinct distances determined by N points in the plane, and its continuous analog, the Falconer distance problem, explore that simple pattern. Questions similar to the Erdos distinct distance problem and the Falconer distance problem can also be posed for more complicated patterns such as triangles, which can be viewed as 3-point configurations. In this talk I will present recent progress on Falconer type problems for simplices. The main techniques used come from analysis and geometric measure theory.

Lower bound on the minimal number of periodic Reeb orbits

Series
Geometry Topology Seminar
Time
Wednesday, April 12, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jean GuttUGA
I will present the recent result with P.Albers and D.Hein that every graphical hypersurface in a prequantization bundle over a symplectic manifold M pinched between two circle bundles whose ratio of radii is less than \sqrt{2} carries either one short simple periodic orbit or carries at least cuplength(M)+1 simple periodic Reeb orbits.

Pages