Seminars and Colloquia by Series

The relativistic dynamics of an electron coupled with a classical nucleus

Series
PDE Seminar
Time
Tuesday, October 25, 2016 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Anne-Sophie de SuzzoniUniversity Paris XIII
This talk is about the Dirac equation. We consider an electron modeled by awave function and evolving in the Coulomb field generated by a nucleus. Ina very rough way, this should be an equation of the form$$i\partial_t u = -\Delta u + V( \cdot - q(t)) u$$where $u$ represents the electron while $q(t)$ is the position of thenucleus. When one considers relativitic corrections on the dynamics of anelectron, one should replace the Laplacian in the equation by the Diracoperator. Because of limiting processes in the chemistry model from whichthis is derived, there is also a cubic term in $u$ as a correction in theequation. What is more, the position of the nucleus is also influenced bythe dynamics of the electron. Therefore, this equation should be coupledwith an equation on $q$ depending on $u$.I will present this model and give the first properties of the equation.Then, I will explain why it is well-posed on $H^2$ with a time of existencedepending only on the $H^1$ norm of the initial datum for $u$ and on theinitial datum for $q$. The linear analysis, namely the properties of thepropagator of the equation $i\partial_t u = D u + V( \cdot - q(t))$ where$D$ is the Dirac operator is based on works by Kato, while the non linearanalysis is based on a work by Cancès and Lebris.It is possible to have more than one nucleus. I will explain why.(Joint work with F. Cacciafesta, D. Noja and E. Séré)

Faculty Meeting

Series
Other Talks
Time
Tuesday, October 25, 2016 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prasad TetaliSchool of Mathematics, Georgia Tech

Perspectives on Diffeomorphic Image Registration

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 24, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Lars RuthottoEmory University Math/CS
Image registration is an essential task in almost all areas involving imaging techniques. The goal of image registration is to find geometrical correspondences between two or more images. Image registration is commonly phrased as a variational problem that is known to be ill-posed and thus regularization is commonly used to ensure existence of solutions and/or introduce prior knowledge about the application in mind. Many relevant applications, e.g., in biomedical imaging, require that plausible transformations are diffeomorphic, i.e., smooth mappings with a smooth inverse. This talk will present and compare two modeling strategies and numerical approaches to diffeomorphic image registration. First, we will discuss regularization approaches based on nonlinear elasticity. Second, we will phrase image registration as an optimal control problem involving hyperbolic PDEs which is similar to the popular framework of Large Deformation Diffeomorphic Metric Mapping (LDDMM). Finally, we will consider computational aspects and present numerical results for real-life medical imaging problems.

Obstructing pseudo-convex embeddings of Brieskorn spheres into complex 2-space

Series
Geometry Topology Seminar
Time
Monday, October 24, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bulent TosunUniversity of Alabama
A Stein manifold is a complex manifold with particularly nice convexity properties. In real dimensions above 4, existence of a Stein structure is essentially a homotopical question, but for 4-manifolds the situation is more subtle. An important question that has been circulating among contact and symplectic topologist for some time asks: whether every contractible smooth 4-manifold admits a Stein structure? In this talk we will provide examples that answer this question negatively. Moreover, along the way we will provide new evidence to a closely related conjecture of Gompf, which asserts that a nontrivial Brieskorn homology sphere, with either orientation, cannot be embedded in complex 2-space as the boundary of a Stein submanifold.

Supperdiusion constants for certain nonuniformly hyperbolic systems

Series
CDSNS Colloquium
Time
Monday, October 24, 2016 - 11:06 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hongkun ZhangU. Mass Amherst
We investigate deterministic superdiusion in nonuniformly hyperbolic system models in terms of the convergence of rescaled distributions to the normal distribution following the abnormal central limit theorem, which differs from the usual requirement that the mean square displacement grow asymptotically linearly in time. We obtain an explicit formula for the superdiffusion constant in terms of the ne structure that originates in the phase transitions as well as the geometry of the configuration domains of the systems. Models that satisfy our main assumptions include chaotic Lorentz gas, Bunimovich stadia, billiards with cusps, and can be apply to other nonuniformly hyperbolic systems with slow correlation decay rates of order O(1/n)

On the k-SUM problem

Series
Combinatorics Seminar
Time
Friday, October 21, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Esther EzraGeorgia Tech

Please Note: Joint work with Micha Sharir (Tel-Aviv University).

Following a recent improvement of Cardinal etal. on the complexity of a linear decision tree for k-SUM, resulting in O(n^3 \log^3{n}) linear queries, we present a further improvement to O(n^2 \log^2{n}) such queries. Our approach exploits a point-location mechanism in arrangements of hyperplanes in high dimensions, and, in fact, brings a new view to such mechanisms. In this talk I will first present a background on the k-SUM problem, and then discuss bottom-vertex triangulation and vertical decomposition of arrangements of hyperplanes and how they serve our analysis.

Mechanical response of three-dimensional tensegrity lattices

Series
GT-MAP Seminar
Time
Friday, October 21, 2016 - 15:00 for 2 hours
Location
Skiles 006
Speaker
Prof. Julian RimoliGT AE
Most available techniques for the design of tensegrity structures can be grouped in two categories. On the one hand, methods that rely on the systematic application of topological and geometric rules to regular polyhedrons have been applied to the generation of tensegrity elementary cells. On the other hand, efforts have been made to either combine elementary cells or apply rules of self-similarity in order to generate complex structures of engineering interest, for example, columns, beams and plates. However, perhaps due to the lack of adequate symmetries on traditional tensegrity elementary cells, the design of three-dimensional tensegrity lattices has remained an elusive goal. In this work, we first develop a method to construct three-dimensional tensegrity lattices from truncated octahedron elementary cells. The required space-tiling translational symmetry is achieved by performing recursive reflection operations on the elementary cells. We then analyze the mechanical response of the resulting lattices in the fully nonlinear regime via two distinctive approaches: we first adopt a discrete reduced-order model that explicitly accounts for the deformation of individual tensegrity members, and we then utilize this model as the basis for the development of a continuum approximation for the tensegrity lattices. Using this homogenization method, we study tensegrity lattices under a wide range of loading conditions and prestressed configurations. We present Ashby charts for yield strength to density ratio to illustrate how our tensegrity lattices can potentially achieve superior performance when compared to other lattices available in the literature. Finally, using the discrete model, we analyze wave propagation on a finite tensegrity lattice impacting a rigid wall.

The Kelmans-Seymour conjecture on subdivisions of $K_5$

Series
School of Mathematics Colloquium
Time
Thursday, October 20, 2016 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xingxing YuGeorgia Tech
A well-known theorem of Kuratowski (1930) in graph theory states that a graph is planar if, and only if, it does not contain a subdivision of $K_5$ or $K_{3,3}$. Wagner (1937) gave a structural characterization of graphs containing no subdivision of $K_{3,3}$. Seymour in 1977 and, independently, Kelmans in 1979 conjectured that if a graph does not contain a subdivision of $K_5$ then it must be planar or contain a set of at most 4 vertices whose removal results in a disconnected graph. In this talk, I will discuss additional background on this conjecture (including connection to the Four Color Theorem), and outline our recent proof of this conjecture (joint work with Dawei He and Yan Wang). I will also mention several problems that are related to this conjecture or related to our approach.

Fractional Calculus, Reproducing Kernel Hilbert Spaces, and Approximation Theory

Series
Analysis Seminar
Time
Wednesday, October 19, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joel RosenfeldUniversity of Florida
I will present results on numerical methods for fractional order operators, including the Caputo Fractional Derivative and the Fractional Laplacian. Fractional order systems have been of growing interest over the past ten years, with applications to hydrology, geophysics, physics, and engineering. Despite the large interest in fractional order systems, there are few results utilizing collocation methods. The numerical methods I will present rely heavily on reproducing kernel Hilbert spaces (RKHSs) as a means of discretizing fractional order operators. For the estimation of a function's Caputo fractional derivative we utilize a new RKHS, which can be seen as a generalization of the Fock space, called the Mittag-Leffler RKHS. For the fractional Laplacian, the Wendland radial basis functions are utilized.

Pages