Seminars and Colloquia by Series

From Hamiltonian dynamics to symplectic capacities

Series
Dynamical Systems Working Seminar
Time
Thursday, May 3, 2012 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alan DiazGeorgia Tech.
In this introductory talk, we review the dynamical motivation for definingsymplectic manifolds, then describe a class of invariants called symplecticcapacities, which are closely related to both volume and the existence ofperiodic orbits. We explore the connections and differences between thesethree notions in the context of some basic phenomena/problems in symplecticgeometry: Gromov's nonsqueezing theorem, the difference between symplecticand volume-preserving diffeomorphisms, and the question of existence ofclosed characteristics on energy surfaces.

Non-Asymptotic Bounds for Prediction Problems and Density Estimation

Series
Dissertation Defense
Time
Tuesday, May 1, 2012 - 15:00 for 2 hours
Location
Skiles 005
Speaker
Stanislav MinskerSchool of Mathematics, Georgia Tech
This dissertation investigates the statistical learning scenarios where a high-dimensional parameter has to be estimated from a given sample of fixed size, often smaller than the dimension of the problem. The first part answers some open questions for the binary classification problem in the framework of active learning. Given a random couple (X,Y)\in R^d\times {\pm 1} with unknown distribution P, the goal of binary classification is to predict a label Y based on the observation X. The prediction rule is constructed based on the observations (X_i,Y_i)_{i=1}^n sampled from P. The concept of active learning can be informally characterized as follows: on every iteration, the algorithm is allowed to request a label Y for any instance X which it considers to be the most informative. The contribution of this work consists of two parts: first, we provide the minimax lower bounds for performance of the active learning methods under certain assumptions. Second, we propose an active learning algorithm which attains nearly optimal rates over a broad class of underlying distributions and is adaptive with respect to the unknown parameters of the problem. The second part of this work is related to sparse recovery in the framework of dictionary learning. Let (X,Y) be a random couple with unknown distribution P, with X taking its values in some metric space S and Y - in a bounded subset of R. Given a collection of functions H={h_t}_{t\in \mb T} mapping S to R, the goal of dictionary learning is to construct a prediction rule for Y given by a linear (or convex) combination of the elements of H. The problem is sparse if there exists a good prediction rule that depends on a small number of functions from H. We propose an estimator of the unknown optimal prediction rule based on penalized empirical risk minimization algorithm. We show that proposed estimator is able to take advantage of the possible sparse structure of the problem by providing probabilistic bounds for its performance. Finally, we provide similar bounds in the density estimation framework.

Kac's program in Kinetic Theory

Series
PDE Seminar
Time
Tuesday, May 1, 2012 - 10:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Clement MouhotUniversity of Cambridge
Mark Kac proposed in 1956 a program for deriving the spatially homogeneous Boltzmann equation from a many-particle jump collision process. The goal was to justify in this context the molecular chaos, as well as the H-theorem on the relaxation to equilibrium. We give answers to several questions of Kac concerning the connexion between dissipativity of the many-particle process and the limit equation; we prove relaxation rates independent of the number of particles as well as the propagation of entropic chaos. This crucially relies on a new method for obtaining quantitative uniform in time estimates of propagation of chaos. This is a joint work with S. Mischler.

Stability for the relative isoperimetric inequality inside an open, convex cone

Series
Math Physics Seminar
Time
Monday, April 30, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Emanuel IndreiUniversity of Texas
The relative isoperimetric inequality inside an open, convex cone C states that under a volume constraint, the ball intersected the cone minimizes the perimeter inside C. In this talk, we will show how one can use optimal transport theory to obtain this inequality, and we will prove a corresponding sharp stability result. This is joint work with Alessio Figalli.

Discrete Mathematical Biology Working Seminar

Series
Other Talks
Time
Monday, April 30, 2012 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Martin CopenhaverGeorgia Tech
A discussion of the paper "Modeling and automation of sequencing-based characterization of RNA structure" by Aviran et al (PNAS, 2011).

Southeast Geometry Seminar

Series
Other Talks
Time
Sunday, April 29, 2012 - 08:30 for 8 hours (full day)
Location
Skiles 005
Speaker
Southeast Geometry SeminarSchool of Mathematics, Georgia Tech

Please Note: The general public lecture will be presented by Jason Cantarella (University of Georgia) entitled The Square Peg Theorems or What does it mean to solve simultaneous equations? to take place in Klaus 1116 at 5:00PM

The Southeast Geometry Seminar is a series of semiannual one-day events focusing on geometric analysis. These events are hosted in rotation by the following institutions: The University of Alabama at Birmingham;  The Georgia Institute of Technology;  Emory University;  The University of Tennessee Knoxville.  The following five speakers will give presentations on topics that include geometric analysis, and related fields, such as partial differential equations, general relativity, and geometric topology. Jason Cantarella (University of Georgia);   Meredith Casey (The Georga Institute of Technology);  Kirk Lancaster (Wichita State University); Junfang Li ( University of Alabama at Birmingham)  Jason Parsley (Wake Forest University);

Towards Sarkozy's Problem

Series
Combinatorics Seminar
Time
Friday, April 27, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ernie CrootSchool of Math, Ga Tech
Sarkozy's problem is a classical problem in additive number theory, which asks for the size of the largest subset A of {1,2,...,n} such that the difference set A-A does not contain a (non-zero) square. I will discuss the history of this problem, some recent progress that I and several collaborators have made on it, and our future research plans.

Pages