Seminars and Colloquia by Series

Hamilton-Jacobi-Bellman equations for the optimal control of dynamical systems with delay

Series
PDE Seminar
Time
Tuesday, January 8, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Fausto GozziLUISS University, Rome, Italy
In this talk we first present some applied examples (coming from Economics and Finance) of Optimal Control Problems for Dynamical Systems with Delay (deterministic and stochastic). To treat such problems with the so called Dynamic Programming Approach one has to study a class of infinite dimensional HJB equations for which the existing theory does not apply due to their specific features (presence of state constraints, presence of first order differential operators in the state equation, possible unboundedness of the control operator). We will present some results on the existence of regular solutions for such equations and on existence of optimal control in feedback form.

Linear isoperimetric bounds for graph coloring

Series
Graph Theory Seminar
Time
Tuesday, January 8, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Luke PostleEmory University
We will discuss how linear isoperimetric bounds in graph coloring lead to new and interesting results. To that end, we say a family of graphs embedded in surfaces is hyperbolic if for every graph in the family the number of vertices inside an open disk is linear in the number of vertices on the boundary of that disk. Similarly we say that a family is strongly hyperbolic if the same holds for every annulus. The concept of hyperbolicity unifies and simplifies a number of known results about coloring graphs on surfaces while resolving some open conjectures. For instance: we have shown that the number of 6-list-critical graphs embeddable on a fixed surface is finite, resolving a conjecture of Thomassen from 1997; that there exists a linear time algorithm for deciding 5-choosability on a fixed surface; that locally planar graphs with distant precolored vertices are 5-choosable (which was conjectured for planar graphs by Albertson in 1999 and recently resolved by Dvorak, Lidicky, Mohar and Postle); that for every fixed surface, the number of 5-list-colorings of a 5-choosable graph is exponential in the number of vertices. We may also adapt the theory to 3-coloring graphs of girth at least five on surface to show that: the number of 4-list-critical graphs of girth at least five on a fixed surface is finite; there exists a linear time algorithm for deciding 3-choosability of graph of girth at least five on a fixed surface; locally planar graphs of girth at least five whose cycles of size four are far apart are 3-choosable (proved for the plane by Dvorak and related to the recently settled Havel's conjecture for triangle-free graphs in the plane). This is joint work with Robin Thomas.

Polymers in Probability: Bridges, Brownian Motion, and Disorder on an Intermediate Scale

Series
Job Candidate Talk
Time
Tuesday, December 11, 2012 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tom AlbertsCaltech
Chemical polymers are long chains of molecules built up from many individual monomers. Examples are plastics (like polyester and PVC), biopolymers (like cellulose, DNA, and starch) and rubber. By some estimates over 60% of research in the chemical industry is related to polymers. The complex shapes and seemingly random dynamics inherent in polymer chains make them natural candidates for mathematical modelling. The probability and statistical physics literature abounds with polymer models, and while most are simple to understand they are notoriously difficult to analyze. In this talk I will describe the general flavor of polymer models and then speak more in depth on my own recent results for two specific models. The first is the self-avoiding walk in two dimensions, which has recently become amenable to study thanks to the invention of the Schramm-Loewner Evolution. Joint work with Hugo-Duminil Copin shows that a specific feature of the self-avoiding walk, called the bridge decomposition, carries over to its conjectured scaling limit, the SLE(8/3) process. The second model is for directed polymers in dimension 1+1. Recent joint work with Kostya Khanin and Jeremy Quastel shows that this model can be fully understood when one considers the polymer in the previously undetected "intermediate" disorder regime. This work ultimately leads to the construction of a new type of diffusion process, similar to but actually very different from Brownian motion.

The colored HOMFLY polynomial is q-holonomic

Series
Geometry Topology Seminar
Time
Monday, December 10, 2012 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Stavros GaroufalidisGeorgia Tech
I will explain how to construct a 4-variable knot invariant which expresses a recursion for the colored HOMFLY polynomial of a knot, and its implications on (a) asymptotics (b) the SL2 character variety of the knot (c) mirror symmetry.

The curve complex of a surface

Series
School of Mathematics Colloquium
Time
Friday, December 7, 2012 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Joan BirmanColumbia University

Please Note: Kickoff of the Tech Topology Conference from December 7-9, 2012.

This will be a Colloquium talk, aimed at a general audience. The topic is the curve complex, introduced by Harvey in 1974. It's a simplicial complex, and was introduced as a tool to study mapping class groups of surfaces. I will discuss recent joint work with Bill Menasco about new local pathology in the curve complex, namely that its geodesics can have dead ends and even double dead ends.

The k-core thresholds in random graphs and hypergraphs

Series
Combinatorics Seminar
Time
Friday, December 7, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Omar AbuzzahabUniversity of Pennsylvania, Philadelphia
The k-core of a (hyper)graph is the unique subgraph where all vertices have degree at least k and which is the maximal induced subgraph with this property. It provides one measure of how dense a graph is; a sparse graph will tend to have a k-core which is smaller in size compared to a dense graph. Likewise a sparse graph will have an empty k-core for more values of k. I will survey the results on the random k-core of various random graph models. A common feature is how the size of the k-core undergoes a phase transition as the density parameter passes a critical threshold. I will also describe how these results are related to a class of related problems that initially don't appear to involve random graphs. Among these is an interesting problem arising from probabilistic number theory where the random hypergraph model has vertex degrees that are "non-homogeneous"---some vertices have larger expected degree than others.

Slow Mixing for the Hard-Core Model on Z^2

Series
ACO Student Seminar
Time
Friday, December 7, 2012 - 13:10 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dana RandallCollege of Computing, Georgia Tech
The hard-core model has attracted much attention across several disciplines, representing lattice gases in statistical physics and independent sets in discrete mathematics and computer science. On finite graphs, we are given a parameter \lambda, and an independent set I arises with probability proportional to \lambda^{|I|}. We are interested in determining the mixing time of local Markov chains that add or remove a small number of vertices in each step. On finite regions of Z^2 it is conjectured that there is a phase transition at some critical point \lambda_c that is approximately 3.79. It is known that local chains are rapidly mixing when \lambda < 2.3882. We give complementary results showing that local chains will mix slowly when \lambda > 5.3646 on regions with periodic (toroidal) boundary conditions and when \lambda > 7.1031 with non-periodic (free) boundary conditions. The proofs use a combinatorial characterization of configurations based on the presence or absence of fault lines and an enumeration of a new class of self-avoiding walks called taxi walks. (Joint work with Antonio Blanca, David Galvin and Prasad Tetali)

A few Ways to Destroy Entropic Chaoticity

Series
Math Physics Seminar
Time
Thursday, December 6, 2012 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Amit EinavUniversity of Cambridge
In this talk we will discuss the definition of chaoticity and entropic chaoticity, as well as the background that led us to define these quantities, mainly Kac's model and the Boltzmann equation. We will then proceed to investigate the fine balance required for entropic chaoticity by exploring situations where chaoticity is valid, but not entropic chaoticity. We will give a general method to construct such states as well as two explicit example, one of which is quite surprising.

Probabilities of all real zeros for random polynomials

Series
Stochastics Seminar
Time
Thursday, December 6, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Wenbo LiUniversity of Delaware
There is a long history on the study of zeros of random polynomials whose coefficients are independent, identically distributed, non-degenerate random variables. We will first provide an overview on zeros of random functions and then show exact and/or asymptotic bounds on probabilities that all zeros of a random polynomial are real under various distributions. The talk is accessible to undergraduate and graduate students in any areas of mathematics.

Fluctuation of the Optimal Alignment Score via Monte Carlo

Series
Research Horizons Seminar
Time
Wednesday, December 5, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Heinrich MatzingerGeorgia Tech, School of Math
The question of the asymptotic order of magnitude of the fluctuation of the Optimal Alignment Score of two random sequences of length n has been open for decades. We prove a relation between that order and the limit of the rescaled optimal alignment score considered as a function of the substitution matrix. This allows us to determine the asymptotic order of the fluctuation for many realistic situations up to a high confidence level.

Pages