Seminars and Colloquia by Series

Branched Covers in Contact Geometry

Series
Other Talks
Time
Wednesday, October 27, 2010 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Meredith CaseySchool of Mathematics, Georgia Tech

Please Note: This talk will be the oral examination for Meredith Casey.

I will first discuss the motivation and background information necessary to study the subjects of branched covers and of contact geometry. In particular we will give some examples and constructions of topological branched covers as well as present the fundamental theorems in this area. But little is understood about the general constructions, and even less about how branched covers behave in the setting of contact geometry, which is the focus of my research. The remainder of the talk will focus on the results I have thus far and current projects.

Sticky particle dynamics with interactions

Series
Research Horizons Seminar
Time
Wednesday, October 27, 2010 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Michael WestdickenbergSchool of Mathematics - Georgia Institute of Technology

Please Note: Hosts: Yao Li and Ricardo Restrepo

We consider compressible fluid flows in Lagrangian coordinates in one space dimension. We assume that the fluid self-interacts through a force field generated by the fluid. We explain how this flow can be described by a differential inclusion on the space of transport maps, when the sticky particle dynamics is assumed. We prove a stability result for solutions of this system. Global existence then follows from a discrete particle approximation.

Some Applications of Nonlinear Dynamics and Statistical Physics in Critical Care

Series
Mathematical Biology Seminar
Time
Wednesday, October 27, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 169
Speaker
Anton BurykinEmory University Center for Critical Care
Critical care is a branch of medicine concerned with the provision of life support or organ support systems in patients who are critically ill and require intensive monitoring. Such monitoring allows us to collect massive amounts of data (usually at the level of organ dynamics, such as electrocardiogram, but recently also at the level of genes). In my talk I’ll show several examples of how ideas from nonlinear dynamics and statistical physics can be applied for the analysis of these data in order to understand and eventually predict physiologic status of critically ill patients: (1) Heart beats, respiration and blood pressure variations can be viewed as a dynamics of a system of coupled nonlinear oscillators (heart, lungs, vessels). From this perspective, a live support devise (e.g. mechanical ventilator used to support breathing) acts as an external driving force on one of the oscillators (lungs). I’ll show that mechanical ventilator entrances the dynamics of whole cardiovascular system and leads to phase synchronization between respiration and heart beats. (2) Then I’ll discuss how fluctuation-dissipation theorem can be used in order to predict heart rate relaxation after a stress (e.g. treadmill exercise test) from the heart rate fluctuations during the stress. (3) Finally, I’ll demonstrate that phase space dynamics of leukocyte gene expression during critical illness and recovery has an attractor state, associated with immunological health.

Tropical Bernstein's theorem

Series
Tropical Geometry Seminar
Time
Wednesday, October 27, 2010 - 10:05 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Anton LeykinGeorgia Tech
The classical Bernstein's theorem says that the number of roots of a system of sparse polynomials with generic coefficients equals the mixed volume of the Newton polytopes of the polynomials. We shall sketch a constructive proof by describing the solutions in the field of Puiseux series. The tropical Bernstein's theorem says that the number of tropical roots of a system of sparse tropical polynomials with generic coefficients equals the mixed volume of the Newton polytopes. We will prove this using the Huber--Sturmfels method for computing mixed volumes with regular mixed subdivisions of polytopes. Side topics: computation of mixed volumes, polyhedral homotopy continuation (finding complex solutions of a sparse polynomial system).

Well-posedness theory for compressible Euler equations in a physical vacuum

Series
PDE Seminar
Time
Tuesday, October 26, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Juhi JangDepartment of Mathematics, University of California, Riverside
An interesting problem in gas and fluid dynamics is to understand the behavior of vacuum states, namely the behavior of the system in the presence of vacuum. A particular interest is so called physical vacuum which naturally arises in physical problems. The main difficulty lies in the fact that the physical systems become degenerate along the boundary. I'll present the well- posedness result of 3D compressible Euler equations for polytropic gases. This is a joint work with Nader Masmoudi.

Group Dynamics in Phototaxis

Series
School of Mathematics Colloquium
Time
Tuesday, October 26, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Doron LevyCSCAMM University of Maryland (College Park)
Microbes live in environments that are often limiting for growth. They have evolved sophisticated mechanisms to sense changes in environmental parameters such as light and nutrients, after which they swim or crawl into optimal conditions. This phenomenon is known as "chemotaxis" or "phototaxis." Using time-lapse video microscopy we have monitored the movement of phototactic bacteria, i.e., bacteria that move towards light. These movies suggest that single cells are able to move directionally but at the same time, the group dynamics is equally important. Following these observations, in this talk we will present a hierarchy of mathematical models for phototaxis: a stochastic model, an interacting particle system, and a system of PDEs. We will discuss the models, their simulations, and our theorems that show how the system of PDEs can be considered as the limit dynamics of the particle system. Time-permitting, we will overview our recent results on particle, kinetic, and fluid models for phototaxis. This is a joint work with Devaki Bhaya (Department of Plant Biology, Carnegie Institute), Tiago Requeijo (Math, Stanford), and Seung-Yeal Ha (Seoul, Korea).

A polynomial invariant of pseudo-Anosov maps

Series
Geometry Topology Seminar
Time
Monday, October 25, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Joan BirmanBarnard College-Columbia University
Pseudo-Anosov mapping classes on surfaces have a rich structure, uncovered by William Thurston in the 1980's. We will discuss the 1995 Bestvina-Handel algorithmic proof of Thurston's theorem, and in particular the "transition matrix" T that their algorithm computes. We study the Bestvina-Handel proof carefully, and show that the dilatation is the largest real root of a particular polynomial divisor P(x) of the characteristic polynomial C(x) = | xI-T |. While C(x) is in general not an invariant of the mapping class, we prove that P(x) is. The polynomial P(x) contains the minimum polynomial M(x) of the dilatation as a divisor, however it does not in general coincide with M(x).In this talk we will review the background and describe the mathematics that underlies the new invariant. This represents joint work with Peter Brinkmann and Keiko Kawamuro.

Energy-based fracture evolution

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 25, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 002 (Ground floor, entrance from Skiles courtyard)
Speaker
Christopher LarsenWPI
I will describe a sequence of models for predicting crack paths in brittlematerials, with each model based on some type of variational principleconcerning the energy. These models will cover the natural range ofstatics, quasi-statics, and dynamics. Some existence results will bedescribed, but the emphasis will be on deficiencies of the models and openquestions.

Dynamic Transition Theory and its Application to Gas-Liquid Phase Transitions

Series
CDSNS Colloquium
Time
Monday, October 25, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Shouhong WangIndiana University
Gas-liquid transition is one of the most basic problem to study in equilibrium phase transitions. In the pressure-temperature phase diagram, the gas-liquid coexistence curve terminates at a critical point C, also called the Andrews critical point. It is, however, still an open question why the Andrews critical point exists and what is the order of transition going beyond this critical point. To answer this basic question, using the Landau's mean field theory and the Le Chatelier principle, a dynamic model for the gas-liquid phase transitions is established. With this dynamic model, we are able to derive a theory on the Andrews critical point C: 1) the critical point is a switching point where the phase transition changes from the first order with latent heat to the third order, and 2) the liquid-gas phase transition going beyond Andrews point is of the third order. This clearly explains why it is hard to observe the liquid-gas phase transition going beyond the Andrews point. In addition, the study suggest an asymmetry principle of fluctuations, which appears also in phase transitions in ferromagnetic systems. The analysis is based on the dynamic transition theory we have developed recently with the philosophy to search the complete set of transition states. The theory has been applied to a wide range of nonlinear problems. A brief introduction for this theory will be presented as well. This is joint with Tian Ma.

Small-time Expansions of the Distributions, Densities, and option prices of stochastic volatility models with Levy jumps

Series
Mathematical Finance/Financial Engineering Seminar
Time
Friday, October 22, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Ruoting GongSchool of Mathematics, Georgia Tech

Please Note: Hosted by Christian Houdre and Liang Peng.

We consider a stochastic volatility model with Levy jumps for a log-return process Z = (Z_t )_{t\ge 0}of the form Z = U + X , where U = (U_t)_{t\ge 0}is a classical stochastic volatility model and X = (X_t)_{t\ge 0} is an independent Levy process with absolutely continuous Levy measure \nu. Small-time expansion, of arbitrary polynomial order in time t, are obtained for the tails P(Z_t\ge z), z > 0 , and for the call-option prices E( e^{z+ Z_t| - 1), z \ne 0, assuming smoothness conditions on the Levy density away from the origin and a small-time large deviation principle on U. The asymptotic behavior of the corresponding implied volatility is also given. Our approach allows for a unified treatment of general payoff functions of the form \phi(x)1_{x\ge z} for smooth function \phi and z > 0. As a consequence of our tail expansions, the polynomial expansions in t of the transition densities f_t are obtained under rather mild conditions.

Pages