Seminars and Colloquia by Series

Music, Time-Frequency Shifts, and Linear Independence

Series
Research Horizons Seminar
Time
Wednesday, April 20, 2011 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chris HeilSchool of Mathematics - Georgia Institute of Technology

Please Note: Hosts: Amey Kaloti and Ricardo Restrepo

Fourier series provide a way of writing almost any signal as a superposition of pure tones, or musical notes.  But this representation is not local, and does not reflect the way that music is actually generated by instruments playing individual notes at different times.  We will discuss time-frequency representations, which are a type of local Fourier representation of signals.  This gives us a mathematical model for representing music.  While the model is crude for music, it is in fact apowerful mathematical representation that has appeared widely throughout mathematics (e.g., partial differential equations), physics (e.g., quantum mechanics), and engineering (e.g., time-varying filtering).  We ask one very basic question: are the notes in this representation linearly independent?  This seemingly trivial question leads to surprising mathematical difficulties.

A statistical model applied to 544 in vivo HIV-1 recombinants reveals that viral genomic features, especially RNA structure, promote recombination

Series
Mathematical Biology Seminar
Time
Wednesday, April 20, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Karin Dorman Departments of Statistics and of Genetics, Development and Cell Biology, Iowa State University
It has long been postulated and somewhat confirmed with limited biological experiment, that RNA structure affects the propensity of HIV-1 reverse transcriptase to undergo strand transfer, a prerequisite for recombination. Our goal was to use the large resource of in vivo recombinants isolated from patients and stored in the HIV database to determine whether there were signals in the HIV-1 genetic sequence, such as propensity to form RNA secondary structure, that promote recombination. Starting from 65,000 HIV-1 sequences at least 400 nucleotides long, we identified 2,360 recombinants involving exactly two distinct subtypes. Since we were interested in mechanistic causes, rather than selective causes, we reduced the number of recombinants to 544 verifiably unique events. We then fit a Gaussian Markov Random Field model with covariates in the mean to assess the impact of genetic features on recombination. We found SHAPE reactivities to be most strongly and negatively correlated with recombination rates, which agrees with the observation that pairing probabilities had an opposite, strong relationship with recombination. Less strongly associated, but still significant, we found G-rich stretches positively correlated, thermal stability negatively correlated, and GC content positively correlated with recombination. Interestingly, known in vitro hotspots did not explain much of the in vivo recombination.

Hardy-Sobolev-Maz'ya Inequalities for Fractional Integrals on Halfspaces and Convex Domains

Series
Dissertation Defense
Time
Tuesday, April 19, 2011 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Craig A. SloaneSchool of Mathematics, Georgia Tech
Classical Hardy, Sobolev, and Hardy-Sobolev-Maz'ya inequalities are well known results that have been studied for awhile. In recent years, these results have been been generalized to fractional integrals. This Dissertation proves a new Hardy inequality on general domains, an improved Hardy inequality on bounded convex domains, and that the sharp constant for any convex domain is the same as that known for the upper halfspace. We also prove, using a new type of rearrangement on the upper halfspace, based in part on Carlen and Loss' concept of competing symmetries, the existence of the fractional Hardy-Sobolev-Maz'ya inequality in the case p = 2, as well as proving the existence of minimizers, at least in limited cases.

Two-dimensional Riemann problems for compressible Euler systems

Series
PDE Seminar
Time
Tuesday, April 19, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Yuxi ZhengPenn State University and Yeshiva University,
We consider Riemann problems for the compressible Euler system in aerodynamics in two space dimensions. The solutionsinvolve shock waves, hyperbolic and elliptic regions. There are also regions which we call semi-hyperbolic. We have shownbefore the existence of such solutions, and now we show regularity of the boundaries of such regions.

A combinatorial spanning tree model for delta-graded knot Floer homology

Series
Geometry Topology Seminar
Time
Monday, April 18, 2011 - 14:20 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
John BaldwinPrinceton
I'll describe a new combinatorial method for computing the delta-graded knot Floer homology of a link in S^3. Our construction comes from iterating an unoriented skein exact triangle discovered by Manolescu, and yields a chain complex for knot Floer homology which is reminiscent of that of Khovanov homology, but is generated (roughly) by spanning trees of the black graph of the link. This is joint work with Adam Levine.

A Piecewise Smooth Image Segmentation Using Gamma-Convergence Approximation in Medical Imaging

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 18, 2011 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
JungHa An California State University, Stanislaus
Medical imaging is the application of mathematical and engineering models to create images of the human body for clinical purposes or medical science by using a medical device. One of the main objectives of medical imaging research is to find the boundary of the region of the interest. The procedure to find the boundary of the region of the interest is called a segmentation. The purpose of this talk is to present a variational region based algorithm that is able to deal with spatial perturbations of the image intensity directly. Image segmentation is obtained by using a Gamma-Convergence approximation for a multi-scale piecewise smooth model. This model overcomes the limitations of global region models while avoiding the high sensitivity of local approaches. The proposed model is implemented efficiently using recursive Gaussian convolutions. The model is applied to magnetic resonance (MR) images where image quality depends highly on the acquisition protocol. Numerical experiments on 2-dimensional human liver MR images show that our model compares favorably to existing methods.This work is done in collaborated with Mikael Rousson and Chenyang Xu.

Oral Comprehensive Exam

Series
Geometry Topology Seminar
Time
Monday, April 18, 2011 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Becca WinarskiGeorgia Tech

Please Note: The actual talk will be 40 minutes. Note the unusual time.

The theorem of Birman and Hilden relates the mapping class group of a surface and its image under a covering map. I'll explore when we can extend the original theorem and possible applications for further work.

Atlanta Lecture Series in Combinatorics and Graph Theory III

Series
Other Talks
Time
Saturday, April 16, 2011 - 13:00 for 4 hours (half day)
Location
Klaus 1456
Speaker
Atlanta Lecture SeriesSchool of Mathematics, Georgia Tech
Emory University, the Georgia Institute of Technology and Georgia State University will host a series of 9 mini-conferences from November, 2010 - April 2013. The conferences will stress a variety of areas and feature one prominent researcher giving 2 fifty minute lectures and 4 outstanding southern researchers each giving one fifty minute lecture. There will also be several 30 minute lecturers by young researchers or graduate students. The featured speaker is Maria Chudnovsky, Columbia University. The lectures begin at 1:00 PM Saturday, April 16 and end at noon on Sunday, April 17.

Pages