Seminars and Colloquia by Series

Recent Progress in Delay-Differential Equations

Series
CDSNS Colloquium
Time
Monday, December 6, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 169
Speaker
John Mallet-ParetBrown University
We examine a variety of problems in delay-differential equations. Among the new results we discuss are existence and asymptotics for multiple-delay problems, global bifurcation of periodic solutions, and analyticity (or lack thereof) in variable-delay problems. We also plan to discuss some interesting open questions in the field.

Nonlinear Science Webminar - Multiple Time Scale Dynamics in Chemical Oscillators

Series
Other Talks
Time
Monday, December 6, 2010 - 10:00 for 1 hour (actually 50 minutes)
Location
Physics Howey 501
Speaker
Chris ScheperCenter for Applied Mathematics, Cornell University
Dynamical systems with multiple time scales have invariant geometric objects that organize the dynamics in phase space. The slow-fast structure of the dynamical system leads to phenomena such as canards, mixed-mode oscillations, and bifurcation delay. We'll discuss two projects involving chemical oscillators. The first is the analysis of a simple chemical model that exhibits complex oscillations. Its bifurcations are studied using a geometric reduction of the system to a one-dimensional induced map. The second investigates the slow-fast mechanisms generating mixed-mode oscillations in a model of the Belousov-Zhabotinsky (BZ) reaction. A mechanism called dynamic Hopf bifurcation is responsible for shaping the dynamics of the system. This webminar will be broadcast on evo.caltech.edu (register, start EVO, webminar link is evo.caltech.edu/evoNext/koala.jnlp?meeting=MMMeMn2e2sDDDD9v9nD29M )

Non-commutative Geometry V - Riemannian Geometry of Ultrametric Cantor Sets

Series
Geometry Topology Working Seminar
Time
Friday, December 3, 2010 - 14:00 for 2 hours
Location
Skiles 171
Speaker
Jean BellissardGa Tech

Please Note: This will be a 2 hour talk.

In this lecture the analog of Riemannian manifold will be introduced through the notion of spectral triple. The recent work on the case of a metric Cantor set, endowed with an ultrametric, will be described in detail during this lecture. An analog of the Laplace Beltrami operator for a metric Cantor set will be defined and studied

Invariant Manifolds in Dynamical Systems

Series
SIAM Student Seminar
Time
Friday, December 3, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Nan LuSchool of Mathematics, Georgia Tech
In this talk, I am going to give a elementary introduction of invariant manifold theory in dynamical systems. I will start with the motivation and definition of invariant manifolds. Then I will discuss how to construct various invariant manifolds of maps and flows. Finally, I will discuss some applications. If time is permitted, I will also discuss a little about invariant foliation.

Planted Cliques and Random Tensors

Series
Stochastics Seminar
Time
Thursday, December 2, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Santosh VempalaCollege of Computing, Georgia Tech
For general graphs, approximating the maximum clique is a notoriously hard problem even to approximate to a factor of nearly n, the number of vertices. Does the situation get better with random graphs? A random graph on n vertices where each edge is chosen with probability 1/2 has a clique of size nearly 2\log n with high probability. However, it is not know how to find one of size 1.01\log n in polynomial time. Does the problem become easier if a larger clique were planted in a random graph? The current best algorithm can find a planted clique of size roughly n^{1/2}. Given that any planted clique of size greater than 2\log n is unique with high probability, there is a large gap here. In an intriguing paper, Frieze and Kannan introduced a tensor-based method that could reduce the size of the planted clique to as small as roughly n^{1/3}. Their method relies on finding the spectral norm of a 3-dimensional tensor, a problem whose complexity is open. Moreover, their combinatorial proof does not seem to extend beyond this threshold. We show how to recover the Frieze-Kannan result using a purely probabilistic argument that generalizes naturally to r-dimensional tensors and allows us recover cliques of size as small as poly(r).n^{1/r} provided we can find the spectral norm of r-dimensional tensors. We highlight the algorithmic question that remains open. This is joint work with Charlie Brubaker.

Traveling Salesman Problems

Series
Graph Theory Seminar
Time
Thursday, December 2, 2010 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Bill CookISyE, GT
We discuss open research questions surrounding the traveling salesman problem. A focus will be on topics having potential impact on the computational solution of large-scale problem instances.

Square function, Riesz transform and rectifiability

Series
Analysis Seminar
Time
Wednesday, December 1, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Svitlana MayborodaPurdue
The quest for a suitable geometric description of major analyticproperties of sets has largely motivated the development of GeometricMeasure Theory in the XXth theory. In particular, the 1880 Painlev\'eproblem and the closely related conjecture of Vitushkin remained amongthe central open questions in the field. As it turns out, their higherdimensional versions come down to the famous conjecture of G. Davidrelating the boundedness of the Riesz transform and rectifiability. Upto date, it remains unresolved in all dimensions higher than 2.However, we have recently showed with A. Volberg that boundedness ofthe square function associated to the Riesz transform indeed impliesrectifiability of the underlying set. Hence, in particular,boundedness of the singular operators obtained via truncations of theRiesz kernel is sufficient for rectifiability. I will discuss thisresult, the major methods involved, and the connections with the G.David conjecture.

Train tracks, braids, and dynamics on surfaces

Series
Research Horizons Seminar
Time
Wednesday, December 1, 2010 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Dan MargalitSchool of Mathematics - Georgia Institute of Technology

Please Note: Hosts: Yao Li and Ricardo Restrepo

Suppose you want to stir a pot of soup with several spoons. What is the most efficient way to do this? Thurston's theory of surface homeomorphisms gives us a concrete way to analyze this question. That is, to each mixing pattern we can associate a real number called the entropy. We'll start from scratch with a simple example, state the Nielsen-Thurston classification of surface homeomorphisms, and give some open questions about entropies of surface homeomorphisms.

Computing Node Polynomials for Plane Curves

Series
Tropical Geometry Seminar
Time
Wednesday, December 1, 2010 - 10:05 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Florian BlockUniversity of Michigan
Enumeration of plane algebraic curves has a 150-year-old history. A combinatorial approach to this problem, inspired by tropical geometry, was recently suggested by Brugalle, Fomin, and Mikhalkin. I will explain this approach and its applications to computing Gromov-Witten invariants (or Severi degrees) of the complex projective plane, and their various generalizations.According to Goettsche's conjecture (now a theorem), these invariants are given by polynomials in the degree d of the curves being counted, provided that d is sufficiently large. I will discuss how to compute these "node polynomials," and how large d needs to be.

Vanishing viscosity limit for the Navier-Stokes equations

Series
PDE Seminar
Time
Tuesday, November 30, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Mikhail PerepelitsaUniversity of Houston
In this talk we will discuss the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. We will follow the approach of R.DiPerna (1983) and reduce the problem to the study of a measure-valued solution of the Euler equations, obtained as a limit of a sequence of the vanishing viscosity solutions. For a fixed pair (x,t), the (Young) measure representing the solution encodes the oscillations of the vanishing viscosity solutions near (x,t). The Tartar-Murat commutator relation with respect to two pairs of weak entropy-entropy flux kernels is used to show that the solution takes only Dirac mass values and thus it is a weak solution of the Euler equations in the usual sense. In DiPerna's paper and the follow-up papers by other authors this approach was implemented for the system of the Euler equations with the artificial viscosity. The extension of this technique to the system of the Navier-Stokes equations is complicated because of the lack of uniform (with respect to the vanishing viscosity), pointwise estimates for the solutions. We will discuss how to obtain the Tartar-Murat commutator relation and to work out the reduction argument using only the standard energy estimates. This is a joint work with Gui-Qiang Chen (Oxford University and Northwestern University).

Pages