Seminars and Colloquia by Series

Localized planar patterns

Series
CDSNS Colloquium
Time
Monday, November 15, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 169
Speaker
Björn SandstedeBrown University
In this talk, I will discuss localized stationary 1D and 2D structures such as hexagon patches, localized radial target patterns, and localized 1D rolls in the Swift-Hohenberg equation and other models. Some of these solutions exhibit snaking: in parameter space, the localized states lie on a vertical sine-shaped bifurcation curve so that the width of the underlying periodic pattern, such as hexagons or rolls, increases as we move up along the bifurcation curve. In particular, snaking implies the coexistence of infinitely many different localized structures. I will give an overview of recent analytical and numerical work in which localized structures and their snaking or non-snaking behavior is investigated.

On some invariants of arrangements

Series
Algebra Seminar
Time
Monday, November 15, 2010 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Uli WaltherPurdue University
I will discuss D-module type invariants on hyperplane arrangements and their relation to the intersection lattice (when known).

Cycles in sparse graphs

Series
Combinatorics Seminar
Time
Friday, November 12, 2010 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Jacques VerstraeteUniversity of California, San Diego

Please Note: **PLEASE NOTE SPECIAL TIME**

Let C(G) denote the set of lengths of cycles in a graph G. In this talk I shall present the recent proofs of two conjectures of P. Erdos on cycles in sparse graphs. In particular, we show that if G is a graph of average degree d containing no cycle of length less than g, then as d -> \infty then |C(G)| = \Omega(d^{\lfloor (g - 1)/2 \rfloor}). The proof is then adapted to give partial results on three further conjectures of Erdos on cycles in graphs with large chromatic number. Specifically, Erd\H{o}s conjectured that a triangle-free graph of chromatic number k contains cycles of at least k^{2 - o(1)} different lengths as k \rightarrow \infty. We define the {\em independence ratio} of a graph G by \iota(G) := \sup_{X \subset V(G)} \frac{|X|}{\alpha(X)}, where \alpha(X) is the independence number of the subgraph of G induced by X. We show that if G is a triangle free graph and \iota(G) \geq k, then |C(G)| = \Omega(k^2 \log k). This result is sharp in view of Kim's probabilistic construction of triangle-free graphs with small independence number. A number of salient open problems will be presented in conclusion. This work is in part joint with B. Sudakov. Abstract

Non-commutative Geometry IV - Crossed products: the noncommutative torus

Series
Geometry Topology Working Seminar
Time
Friday, November 12, 2010 - 14:00 for 2 hours
Location
Skiles 171
Speaker
Jean BellissardGa Tech

Please Note: Note this is a 2 hour talk.

In this lecture, we will look at the notion of crossed product by a group action. The example of the non commutative torus will be considered in detail. The analog of vector fields, vector bundle and connection will be introduced from this example. Some example of connection will be described and the curvature will be computed.

Sequences of problems, matrices, and solutions

Series
Other Talks
Time
Friday, November 12, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Klaus 1447
Speaker
Eric de SturlerDepartment of Mathematics, Virginia Tech
In a wide range of applications, we deal with long sequences of slowly changing matrices or large collections of related matrices and corresponding linear algebra problems. Such applications range from the optimal design of structures to acoustics and other parameterized systems, to inverse and parameter estimation problems in tomography and systems biology, to parameterization problems in computer graphics, and to the electronic structure of condensed matter. In many cases, we can reduce the total runtime significantly by taking into account how the problem changes and recycling judiciously selected results from previous computations. In this presentation, I will focus on solving linear systems, which is often the basis of other algorithms. I will introduce the basics of linear solvers and discuss relevant theory for the fast solution of sequences or collections of linear systems. I will demonstrate the results on several applications and discuss future research directions.

A Minimax Problem in Almost Axisymmetric Flows

Series
SIAM Student Seminar
Time
Friday, November 12, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Mark SedjroSchool of Mathematics, Georgia Tech
Almost axisymmetric flows are derived from Boussinesq equations for incompressible fluids. They are supposed to capture special features in tropical cyclones. We establish an unusual minimax equality as the first step towards studying this challenging problem. I will review some basic techniques of the calculus of variations.

Random matrices with independent log-concave columns

Series
Stochastics Seminar
Time
Thursday, November 11, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Radoslaw AdamczakUniversity of Warsaw and Fields Institute
I will discuss certain geometric properties of random matrices with independent logarithmically concave columns, obtained in the last several years jointly with O. Guedon, A. Litvak, A. Pajor and N. Tomczak-Jaegermann. In particular I will discuss estimates on the largest and smallest singular values of such matrices and rates on convergence of empirical approximations to covariance matrices of log-concave measures (the Kannan-Lovasz-Simonovits problem).

Kelly width

Series
Graph Theory Seminar
Time
Thursday, November 11, 2010 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Nishad KothariCS, GT
Tree-width is a well-known metric on undirected graphs that measures how tree-like a graph is and gives a notion of graph decomposition that proves useful in fixed-parameter tractable (FPT) algorithm development. In the directed setting, many similar notions have been proposed - none of which has been accepted widely as a natural generalization of tree-width. Among the many suggested equivalent parameters were the "directed tree-width" by Johnson et al, and DAG-width by Berwanger et al and Odbrzalek. In this talk, I will present a recent paper by Hunter and Kreutzer, that defines another such directed width parameter, celled "kelly-width". I will discuss the equivalent complexity measures for graphs such as elimination orderings, k-trees and cops and robber games and study their natural generalizations to digraphs. I will discuss its usefulness by discussing potential applications including polynomial-time algorithms for NP-complete problems on graphs of bounded Kelly-width (FPT). I will also briefly discuss our work in progress (joint with Shiva Kintali) towards designing an approximation algorithm for Kelly Width.

Convex Algebraic Geometry

Series
School of Mathematics Colloquium
Time
Thursday, November 11, 2010 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Bernd SturmfelsUC Berkeley
Convex algebraic geometry is an emerging field at the interface of convex optimizationand algebraic geometry. A primary focus lies on the mathematical underpinnings ofsemidefinite programming. This lecture offers a self-contained introduction. Startingwith elementary questions concerning multifocal ellipses in the plane, we move on todiscuss the geometry of spectrahedra and orbitopes, and we end with recent resultson the convex hull of a real algebraic variety.

Weighted estimates for quasilinear equations with BMO coefficients on Reifenberg flat domains and their applications

Series
Analysis Seminar
Time
Wednesday, November 10, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Nguyen Cong PhucLSU
We discuss a global weighted estimate for a class of divergence form elliptic operators with BMO coefficients on Reifenbergflat domains. Such an estimate implies new global regularity results in Morrey, Lorentz, and H\"older spaces for solutionsof certain nonlinear elliptic equations. Moreover, it can also be used to obtain a capacitary estimate to treat a measuredatum quasilinear Riccati type equations with nonstandard growth in the gradient.

Pages