Seminars and Colloquia by Series

A homomorphic universal finite type invariant of knotted trivalent graphs

Series
Geometry Topology Seminar
Time
Monday, November 29, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Zsuzsanna DancsoUniversity of Toronto
Knotted trivalent graphs (KTGs) along with standard operations defined on them form a finitely presented algebraic structure which includes knots, and in which many topological knot properties are defineable using simple formulas. Thus, a homomorphic invariant of KTGs places knot theory in an algebraic context. In this talk we construct such an invariant: the starting point is extending the Kontsevich integral of knots to KTGs. This was first done in a series of papers by Le, Murakami, Murakami and Ohtsuki in the late 90's using the theory of associators. We present an elementary construction building on Kontsevich's original definition, and discuss the homomorphic properties of the invariant, which, as it turns out, intertwines all the standard KTG operations except for one, called the edge unzip. We prove that in fact no universal finite type invariant of KTGs can intertwine all the standard operations at once, and present an alternative construction of the space of KTGs on which a homomorphic universal finite type invariant exists. This space retains all the good properties of the original KTGs: it is finitely presented, includes knots, and is closely related to Drinfel'd associators. (Partly joint work with Dror Bar-Natan.)

Oscillatory component recovery and separation in images by Sobolev norms

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 29, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Yunho Kim University of California, Irvine
It has been suggested by Y. Meyer and numerically confirmed by many othersthat dual spaces are good for texture recovery. Among the dual spaces, ourwork focuses on Sobolev spaces of negative differentiability to recovertexture from noisy blurred images. Such Sobolev spaces are good to modeloscillatory component, on the other hand, the spaces themselves hardlydistinguishes texture component from noise component because noise is alsoconsidered to be a highly oscillatory component. In this talk, in additionto oscillatory component recovery, we will further investigate aone-parameter family of Sobolev norms to achieve such a separation task.

Markov Perfect Nash Equilibria: Some Considerations on Economic Models, Dynamical Systems and Statistical Mechanic

Series
CDSNS Colloquium
Time
Monday, November 29, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 169
Speaker
Federico Bonetto Georgia Tech
Modern Economic Theory is largely based on the concept of Nash Equilibrium. In its simplest form this is an essentially statics notion. I'll introduce a simple model for the use of money (Kiotaki and Wright, JPE 1989) and use it to introduce a more general (dynamic) concept of Nash Equilibrium and my understanding of its relation to Dynamical Systems Theory and Statistical Mechanics.

Tropical Implicitization and Elimination

Series
Tropical Geometry Seminar
Time
Wednesday, November 24, 2010 - 10:05 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Josephine YuGeorgia Tech
I will talk about how tropical geometry can be used for implicitization and elimination problems. Implicitization is the problem of finding the defining equations (implicit equations) of an algebraic variety from a given parameterization. Elimination is the problem of finding the defining equations of a projection of an algebraic variety. In some instances such as the case when the polynomials involved have generic coefficients, we give a combinatorial construction of the tropical varieties without actually computing the defining polynomials. Tropical varieties can then be used to compute invariants of the original varieties.

The Moving Interface Problem for Fluid Flow

Series
Stelson Lecture Series
Time
Tuesday, November 23, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
James GlimmDepartment of Applied Mathematics and Statistics, University of Stony Brook,

Please Note: Mathematics lecture

New technologies have been introduced into the front tracking method to improve its performance in extreme applications, those dominated by a high density of interfacial area. New mathematical theories have been developed to understand the meaning of numerical convergence in this regime. In view of the scientific difficulties of such problems, careful verifaction, validation and uncertainty quantification studies have been conducted. A number of interface dominated flows occur within practical problems of high consequence, and in these cases, we are able to contribute to ongoing scientific studies. We include here turbulent mixing and combustion, chemical processing, design of high energy accelerators, nuclear fusion related studies, studies of nuclear power reactors and studies of flow in porous media. In this lecture, we will review some of the above topics.

Role of Mathematics Across Science and Beyond

Series
Stelson Lecture Series
Time
Monday, November 22, 2010 - 16:30 for 1 hour (actually 50 minutes)
Location
Klaus 1116
Speaker
James GlimmUniversity of Stony Brook, Department of Applied Mathematics and Statistics

Please Note: This lecture is more for the general audience. Reception to follow in Klaus Atrium.

The changing status of knowledge from descriptive to analytic, from empirical to theoretical and from intuitive to mathematical has to be one of the most striking adventures of the human spirit. The changes often occur in small steps and can be lost from view. In this lecture we will review vignettes drawn from the speaker's personal knowledge that illustrate this transformation in thinking. Examples include not only the traditional areas of physics and engineering, but also newer topics, as in biology and medicine, in the social sciences, in commerce, and in the arts. We also review some of the forces driving these changes, which ultimately have a profound effect on the organization of human life.

A quantitative rigidity result for the cubic to tetragonal phase transition in the geometrically linear theory with interfacial energy

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 22, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Antonio Capella-KortUniversidad Nacional Autónoma de México (UNAM)
We are interested in the cubic to tetragonal phase transition in a shape memory alloy. We consider geometrically linear elasticity. In this framework, Dolzmann and Mueller have shown the following rigidity result:The only stress-free configurations are (locally) twins (i.e. laminates of just two of the three Martensitic variants).However, configurations with arbitrarily small elastic energy are not necessarily close to these twins: The formation of microstructure allows to mix all three Martensitic variants at arbitrary volume fractions. We take an interfacial energy into account and establish a (local) lower bound on elastic + interfacial energy in terms of the Martensitic volume fractions. The model depends on a non-dimensional parameter that measures the strength of the interfacial energy. Our lower, ansatz-free bound has optimal scaling in this parameter. It is the scaling predicted by a reduced model introduced and analyzed by Kohn and Mueller with the purpose to describe the microstructure near an interface between Austenite and twinned Martensite. The optimal construction features branching of the Martensitic twins when approaching this interface.

Normally Elliptic Singular Perturbations and persistence of homoclinic orbits

Series
CDSNS Colloquium
Time
Monday, November 22, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 169
Speaker
Nan LuGeorgia Tech
We consider a dynamical system, possibly infinite dimensional or non-autonomous, with fast and slow time scales which is oscillatory with high frequencies in the fast directions. We first derive and justify the limit system of the slow variables. Assuming a steady state persists, we construct the stable, unstable, center-stable, center-unstable, and center manifolds of the steady state of a size of order $O(1)$ and give their leading order approximations. Finally, using these tools, we study the persistence of homoclinic solutions in this type of normally elliptic singular perturbation problems.

Curve operators and Toeplitz operators in TQFT.

Series
Geometry Topology Seminar
Time
Friday, November 19, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Julien Marche Paris VII & Ecole Polytechnique
Topological quantum field theory associates to a surface a sequence of vector spaces and to curves on the surface, sequence of operators on that spaces. It is expected that these operators are Toeplitz although there is no general proof. I will state it in some particular cases and give applications to the asymptotics of quantum invariants like quantum 6-j symbols or quantum invariants of Dehn fillings of the figure eight knot. This is work in progress with (independently) L. Charles and T. Paul.

Pages