Seminars and Colloquia by Series

Sets of non-Lyapunov behaviour for transfer matrices of Schroedinger operators

Series
Math Physics Seminar
Time
Thursday, February 2, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
ONLINE and Skiles room 005
Speaker
Sasha SodinQueen Mary University of London

We shall discuss the asymptotics of singular values of the transfer matrices of ergodic Schroedinger and block-Schroedinger  operators. At a fixed value of the spectral parameter, the logarithmic asymptotics is almost surely given by the Lyapunov exponents; however, this is not, in general, true simultaneously for all the values of the parameter.  We shall try to explain the importance of these sets in various problems of spectral theory, and then review some of the earlier works on the subject and present some new results. Based on joint work with I. Goldsheid.

This talk will be online.  Meeting ID: 919 5236 6315.  Pleas note the unusual time!

Continuous combinatorics and natural quasirandomness

Series
Job Candidate Talk
Time
Wednesday, February 1, 2023 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Leonardo CoreglianoInstitute for Advanced Study

The theory of graph quasirandomness studies graphs that "look like" samples of the Erdős--Rényi
random graph $G_{n,p}$. The upshot of the theory is that several ways of comparing a sequence with
the random graph turn out to be equivalent. For example, two equivalent characterizations of
quasirandom graph sequences is as those that are uniquely colorable or uniquely orderable, that is,
all colorings (orderings, respectively) of the graphs "look approximately the same". Since then,
generalizations of the theory of quasirandomness have been obtained in an ad hoc way for several
different combinatorial objects, such as digraphs, tournaments, hypergraphs, permutations, etc.

The theory of graph quasirandomness was one of the main motivations for the development of the
theory of limits of graph sequences, graphons. Similarly to quasirandomness, generalizations of
graphons were obtained in an ad hoc way for several combinatorial objects. However, differently from
quasirandomness, for the theory of limits of combinatorial objects (continuous combinatorics), the
theories of flag algebras and theons developed limits of arbitrary combinatorial objects in a
uniform and general framework.

In this talk, I will present the theory of natural quasirandomness, which provides a uniform and
general treatment of quasirandomness in the same setting as continuous combinatorics. The talk will
focus on the first main result of natural quasirandomness: the equivalence of unique colorability
and unique orderability for arbitrary combinatorial objects. Although the theory heavily uses the
language and techniques of continuous combinatorics from both flag algebras and theons, no
familiarity with the topic is required as I will also briefly cover all definitions and theorems
necessary.

This talk is based on joint work with Alexander A. Razborov.

Optimal control of stochastic delay differential equations

Series
PDE Seminar
Time
Tuesday, January 31, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Filippo de FeoPolitecnico di Milano

In this talk we will discuss an optimal control problem for stochastic differential delay equations. We will only consider the case with delays in the state. We will show how to rewrite the problem in a suitable infinite-dimensional Hilbert space. Then using the dynamic programming approach we will characterize the value function of the problem as the unique viscosity solution of an infinite dimensional Hamilton-Jacobi-Bellman equation.  We will discuss partial C^{1}-regularity of the value function. This regularity result is particularly interesting since it permits to construct a candidate optimal feedback map which may allow to find an optimal feedback control. Finally we will discuss some ideas about the case in which delays also appear in the controls.

This is a joint work with S. Federico and A. Święch.

Higher Complex Structures and Hitchin Components

Series
Geometry Topology Seminar
Time
Monday, January 30, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex NolteRice/Georgia Tech

A source of richness in Teichmüller theory is that Teichmüller spaces have descriptions both in terms of group representations and in terms of hyperbolic structures and complex structures. A program in higher-rank Teichmüller theory is to understand to what extent there are analogous geometric interpretations of Hitchin components. In this talk, we will give a natural description of the SL(3,R) Hitchin component in terms of higher complex structures as first described by Fock and Thomas. Along the way, we will describe higher complex structures in terms of jets and discuss intrinsic structural features of Fock-Thomas spaces.

Towards a theory of complexity of sampling, inspired by optimization

Series
Job Candidate Talk
Time
Monday, January 30, 2023 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 and https://gatech.zoom.us/j/91578357941?pwd=QS9malIvMVJqaWhpT0xqdWtxMCs1QT09
Speaker
Sinho ChewiMIT

Sampling is a fundamental and widespread algorithmic primitive that lies at the heart of Bayesian inference and scientific computing, among other disciplines. Recent years have seen a flood of works aimed at laying down the theoretical underpinnings of sampling, in analogy to the fruitful and widely used theory of convex optimization. In this talk, I will discuss some of my work in this area, focusing on new convergence guarantees obtained via a proximal algorithm for sampling, as well as a new framework for studying the complexity of non-log-concave sampling.

Determinants of Sums of Normal Matrices

Series
Algebra Seminar
Time
Monday, January 30, 2023 - 10:20 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Luke OedingAuburn University

Marcus (1972) and de Oliveira (1982) conjectured  bounds on the determinantal range of the sum of a pair of normal matrices with prescribed eigenvalues.  We show that this determinantal range is a flattened solid twisted permutahedron, which is, in turn, a finite union of flattened solid twisted hypercubes with prescribed vertices.  This complete geometric description, in particular, proves the conjecture. Our techniques are based on classical Lie theory, geometry, and combinatorics. I will give a pre-seminar that will be accessible to 1st year graduate students who like matrices, and provides an easy introduction to the topic. This is joint work with Matt Speck.

Differential encoding of sensory information across cortical microcircuitry

Series
CDSNS Colloquium
Time
Friday, January 27, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006 and Online
Speaker
Hannah ChoiGeorgia Tech

Please Note: https://gatech.zoom.us/j/98358157136

Mammalian cortical networks are known to process sensory information utilizing feedforward and feedback connections along the cortical hierarchy as well as intra-areal connections between different cortical layers. While feedback and feedforward signals have distinct layer-specific connectivity motifs preserved across species, the computational relevance of these connections is not known. Motivated by predictive coding theory, we study how expected and unexpected visual information is encoded along the cortical hierarchy, and how layer-specific feedforward and feedback connectivity contributes to differential, context-dependent representations of information across cortical layers, by analyzing experimental recordings of neural populations and also by building a recurrent neural network (RNN) model of the cortical microcircuitry. Experimental evidence shows that information about identity of the visual inputs and expectations are encoded in different areas of the mouse visual cortex, and simulations with our RNNs which incorporate biologically plausible connectivity motifs suggest that layer-specific feedforward and feedback connections may be the key contributor to this differential representation of information.
 

Absolute concentration robustness and multistationarity in biochemical reaction networks

Series
Mathematical Biology Seminar
Time
Friday, January 27, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tung NguyenTexas A&M University - Department of Mathematics

Please Note: The classroom version of this event will be held in Skiles 005. Everyone on campus at Georgia Tech is highly encouraged to attend this version. The virtual version will be administered through Zoom. (Link: https://gatech.zoom.us/j/91063740629 )

Reaction networks are commonly used to model a variety of physical systems ranging from the microscopic world like cell biology and chemistry, to the macroscopic world like epidemiology and evolution biology. A biologically relevant property that reaction networks can have is absolute concentration robustness (ACR), which refers to when a steady-state species concentration is maintained even when initial conditions are changed. Networks with ACR have been observed experimentally, for example, in E. coli EnvZ-OmpR and IDHKP-IDH systems. Another reaction network property that might be desirable is multistationarity-the capacity for two or more steady states, since it is often associated with the capability for cellular signaling and decision-making.

While the two properties seem to be opposite, having both properties might be favorable as a biochemical network may require robustness in its internal operation while maintaining flexibility as a signal-response mechanism. As such, our driving motivation is to explore what network structures can produce ACR and multistationarity. We show that it is highly atypical for both properties to coexist in very small and very large reaction networks without special structures. However, it is possible for them to coexist in certain classes of reaction networks. I will discuss in detail one such class of networks, which consists of multisite phosphorylation-dephosphorylation cycles with a ``paradoxical enzyme".

Lost Theorems of Geometry

Series
Graduate Student Colloquium
Time
Friday, January 27, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Katherine BoothGeorgia Tech

Most of us have been taught geometry from the perspective of equations and how those equations act on a given space. But in the 1870’s, Felix Klein’s Erlangen program was more concerned about the maps that preserved the geometric structures of a space rather than the equations themselves. In this talk, I will present some modern results from this perspective and show details of how to reconstruct the equations that preserve geometric structures.

Utility maximizing load balancing policies

Series
ACO Student Seminar
Time
Friday, January 27, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Diego GoldsztajnEindhoven University of Technology

We consider a service system where incoming tasks are instantaneously assigned to one out of many heterogeneous server pools. All the tasks sharing a server pool are executed in parallel and the execution times do not depend on the class of the server pool or the number of tasks currently contending for service. However, associated with each server pool is a utility function that does depend on the class of the server pool and the number of tasks currently sharing it. These features are characteristic of streaming and online gaming services, where the duration of tasks is mainly determined by the application but congestion can have a strong impact on the quality-of-service (e.g., video resolution and smoothness). We derive an upper bound for the mean overall utility in steady-state and introduce two load balancing policies that achieve this upper bound in a large-scale regime. Also, the transient and stationary behavior of these asymptotically optimal load balancing policies is characterized in the same large-scale regime.

Pages