Seminars and Colloquia Schedule

Monotonic simplification of rectangular diagrams and contact topology

Series
Geometry Topology Seminar
Time
Monday, March 25, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
I. DynnikovMoscow State University
A few years ago I proved that any rectangular diagram of the unknot admits monotonic simplification by elementary moves. More recently M.Prasolov and I addressed the question: when a rectangular diagram of a link admits at least one step of simplification? It turned out that an answer can be given naturally in terms of Legendrian links. On this way, we resolved positively a conjecture by V.Jones on the invariance of the algebraic crossing number of a minimal braid, and a few similar questions.

Sparse numerical linear algebra and interpolation spaces

Series
Applied and Computational Mathematics Seminar
Time
Monday, March 25, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mario ArioliRutherford Appleton Laboratory, United Kingdom
We derive discrete norm representations associated with projections of interpolation spaces onto finite dimensional subspaces. These norms are products of integer and non integer powers of the Gramian matrices associated with the generating pair of spaces for the interpolation space. We include a brief description of some of the algorithms which allow the efficient computation of matrix powers. We consider in some detail the case of fractional Sobolev spaces both for positive and negative indices together with applications arising in preconditioning techniques. Several other applications are described.

Matroids over rings

Series
Algebra Seminar
Time
Monday, March 25, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alex FinkN.C. State
Matroids are widely used objects in combinatorics; they arise naturally in many situations featuring vector configurations over a field. But in some contexts the natural data are elements in a module over some other ring, and there is more than simply a matroid to be extracted. In joint work with Luca Moci, we have defined the notion of matroid over a ring to fill this niche. I will discuss two examples of situations producing these enriched objects, one relating to subtorus arrangements producing matroids over the integers, and one related to tropical geometry producing matroids over a valuation ring. Time permitting, I'll also discuss the analogue of the Tutte invariant.

Convergent series and domains of analyticity for response solutions in quasi-periodically forced strongly dissipative systems

Series
CDSNS Colloquium
Time
Monday, March 25, 2013 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Livia CorsiUniversity of Naples ``Federico II''
We study the ordinary differential equation \varepsilon \ddot x + \dot x + \varepsilon g(x) = \e f(\omega t), with f and g analytic and f quasi-periodic in t with frequency vector \omega\in\mathds{R}^{d}. We show that if there exists c_{0}\in\mathds{R} such that g(c_{0}) equals the average of f and the first non-zero derivative of g at c_{0} is of odd order \mathfrak{n}, then, for \varepsilon small enough and under very mild Diophantine conditions on \omega, there exists a quasi-periodic solution "response solution" close to c_{0}, with the same frequency vector as f. In particular if f is a trigonometric polynomial the Diophantine condition on \omega can be completely removed. Moreover we show that for \mathfrak{n}=1 such a solution depends analytically on \e in a domain of the complex plane tangent more than quadratically to the imaginary axis at the origin. These results have been obtained in collaboration with Roberto Feola (Universit\`a di Roma ``La Sapienza'') and Guido Gentile (Universit\`a di Roma Tre).

Conditional independence models

Series
Other Talks
Time
Monday, March 25, 2013 - 17:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Pedro RangelGeorgia Tech
(algebraic statistics reading seminar)

Short proofs of coloring theorems on planar graphs

Series
Graph Theory Seminar
Time
Tuesday, March 26, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Bernard LidickyUniversity of Illinois at Urbana-Champaign
A recent lower bound on the number of edges in a k-critical n-vertex graph by Kostochka and Yancey yields a half-page proof of the celebrated Grotzsch Theorem that every planar triangle-free graph is 3-colorable. We use the same bound to give short proofs of other known theorems on 3-coloring of planar graphs, among whose is the Grunbaum-Aksenov Theorem that every planar with at most three triangles is 3-colorable. We also prove the new result that every graph obtained from a triangle-free planar graph by adding a vertex of degree at most four is 3-colorable. Joint work with O. Borodin, A. Kostochka and M. Yancey.

Wasserstein distances in the analysis of time series and dynamical systems

Series
CDSNS Colloquium
Time
Tuesday, March 26, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sjoerd Verduyn LunelUniversiteit Utrecht
A new approach based on Wasserstein distances, which are numerical costs ofan optimal transportation problem, allows to analyze nonlinear phenomena ina robust manner. The long-term behavior is reconstructed from time series, resulting in aprobability distribution over phase space. Each pair of probabilitydistributions is then assigned a numerical distance that quantifies thedifferences in their dynamical properties. From the totality of all these distances a low-dimensional representation ina Euclidean spaceis derived. This representation shows the functional relationships betweenthe dynamical systems under study. It allows to assess synchronizationproperties and also offers a new way of numerical bifurcation analysis.

Weak KAM theorem for the most general first-order Nonlinear partial differential equation

Series
Dynamical Systems Working Seminar
Time
Tuesday, March 26, 2013 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xifeng SuAcademy of Mathematics and Systems Science, Chinese Academy of Sciences
We consider the evolutionary first order nonlinear partial differential equations of the most general form \frac{\partial u}{\partial t} + H(x, u, d_x u)=0.By virtue of introducing a new type of solution semigroup, we establish the weak KAM theorem for such partial differential equations, i.e. the existence of weak KAM solutions or viscosity solutions. Indeed, by employing dynamical approach for characteristics, we develop the theory of associated global viscosity solutions in general. Moreover, the solution semigroup acting on any given continuous function will converge to a uniform limit as the time goes to infinity. As an application, we prove that such limit satisfies the the associated stationary first order partial differential equations: H(x, u, d_x u)=0.

Integrable systems as a tool in math-physics problems

Series
Research Horizons Seminar
Time
Wednesday, March 27, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Plamen IlievGeorgia Tech, School of Math
In the last few years many problems of mathematical and physical interest, which may not be Hamiltonian or even dynamical, were solved using techniques from integrable systems. I will review some of these techniques and their connections to some open research problems.

Wolff's Ideal Problem in the Multiplier Algebra on weighted Dirichlet Space

Series
Analysis Seminar
Time
Wednesday, March 27, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Debendra BanjadeUniversity of Alabama
In 1980, T. M. Wolff has given the following version of the ideal membership for finitely generated ideals in $H^{\infty}(\mathbb{D})$: \[\ensuremath{\mbox{If \,\,}\left\{ f_{j}\right\} _{j=1}^{n}}\subset H^{\infty}(\mathbb{D}),\, h\in H^{\infty}(\mathbb{D})\,\,\mbox{and }\]\[\vert h(z)\vert\leq\left(\underset{j=1}{\overset{n}{\sum}}\vert f_{j}(z)\vert^{2}\right)^{\frac{1}{2}}\,\mbox{for all \ensuremath{z\in\mathbb{D},}}\]then \[h^{3}\in\mathcal{I}\left(\left\{ f_{j}\right\} _{j=1}^{n}\right),\,\,\mbox{the ideal generated by \ensuremath{\left\{ f_{j}\right\} _{j=1}^{n}}in \ensuremath{H^{\infty}}\ensuremath{(\mathbb{D})}. }\]In this talk, we will give an analogue of the Wolff's ideal problem in the multiplier algebra on weighted Dirichlet space. Also, we will give a characterization for radical ideal membership.

Semidefinite method in extremal graph theory

Series
Job Candidate Talk
Time
Thursday, March 28, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sergey NorinMcGill University
Many fundamental theorems in extremal graph theory can be expressed as linear inequalities between homomorphism densities. Lovasz and, in a slightly different formulation, Razborov asked whether it is true that every such inequality follows from a finite number of applications of the Cauchy-Schwarz inequality. In this talk we will show that the answer to this question is negative. Further, we will show that the problem of determining the validity of a linear inequality between homomorphism densities is undecidable. Hence such inequalities are inherently difficult in their full generality. These results are joint work with Hamed Hatami. On the other hand, the Cauchy-Schwarz inequality (a.k.a. the semidefinite method) represents a powerful tool for obtaining _particular_ results in asymptotic extremal graph theory. Razborov's flag algebras provide a formalization of this method and have been used in over twenty papers in the last four years. We will describe an application of flag algebras to Turan’s brickyard problem: the problem of determining the crossing number of the complete bipartite graph K_{m,n}. This result is based joint work with Yori Zwols.

Even K3,3's in Bipartite Graphs

Series
Graph Theory Seminar
Time
Thursday, March 28, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter WhalenGeorgia Tech
We show that any internally 4-connected non-planar bipartite graph contains a subdivision of K3,3 in which each subdivided path contains an even number of vertices. In addition to being natural, this result has broader applications in matching theory: for example, finding such a subdivision of K3,3 is the first step in an algorithm for determining whether or not a bipartite graph is Pfaffian. This is joint work with Robin Thomas.

Quenched asymptotics for Brownian motion in a Gaussian potential

Series
Stochastics Seminar
Time
Thursday, March 28, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xia ChenUniversity of Tennessee
Recall that the notion of generalized function is introduced for the functions that are not defined point-wise, and is given as a linearfunctional over test functions. The same idea applies to random fields.In this talk, we study the long term asymptotics for the quenchedexponential moment of V(B(s)) where B(s) is d-dimensional Brownian motion,V(.) is a generalized Gaussian field. We will discuss the solution to anopen problem posed by Carmona and Molchanov with an answer different fromwhat was conjectured; the quenched laws for Brownian motions inNewtonian-type potentials, and in the potentials driven by white noise orby fractional white noise.

Stable regimes for hard disks in a channel with twisting walls

Series
Math Physics Seminar
Time
Friday, March 29, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nikolai Chernov UAB
We study a gas of N hard disks in a box with semi-periodic boundary conditions. The unperturbed gas is hyperbolic and ergodic (these facts are proved for N=2 and expected to be true for all N>2). We study various perturbations by "twisting" the outgoing velocity at collisions with the walls. We show that the dynamics tends to collapse to various stable regimes, however we define the perturbations and however small they are.