Seminars and Colloquia by Series

Linear and rational factorization of tropical polynomials

Series
Algebra Seminar
Time
Monday, March 30, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Bo LinGeorgia Tech

Already for bivariate tropical polynomials, factorization is an NP-Complete problem.In this talk, we will introduce a rich class of tropical polynomials in n variables, which admit factorization and rational factorization into well-behaved factors. We present efficient algorithms of their factorizations with examples. Special families of these polynomials have appeared in economics,discrete convex analysis, and combinatorics. Our theorems rely on an intrinsic characterization of regular mixed subdivisions of integral polytopes, and lead to open problems of interest in discrete geometry.

The talk will be held online via Bluejeans. Use the following link to join the meeting.

Cancelled due to COVID-19: Counting extensions revisited

Series
Combinatorics Seminar
Time
Friday, March 27, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lutz WarnkeGeorgia Tech

We consider rooted subgraphs in random graphs, i.e., extension counts such as (i) the number of triangles containing a given vertex or (ii) the number of paths of length three connecting two given vertices. 
In 1989, Joel Spencer gave sufficient conditions for the event that, with high probability, these extension counts are asymptotically equal for all choices of the root vertices.  
For the important strictly balanced case, Spencer also raised the fundamental question whether these conditions are necessary. 
We answer this question by a careful second moment argument, and discuss some intriguing problems that remain open. 

Post-grazing dynamics of a vibro-impacting energy generator--Postponed

Series
SIAM Student Seminar
Time
Friday, March 27, 2020 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Larissa SerdukovaGT Math

The motion of a forced vibro-impacting inclined energy harvester is investigated in parameter regimes with asymmetry in the number of impacts on the bottom and top of the device. This motion occurs beyond a grazing bifurcation, at which alternating top and bottom impacts are supplemented by a zero velocity impact with the bottom of the device. For periodic forcing, we obtain semi-analytical expressions for the asymmetric periodic motion with a ratio of 2:1 for the impacts on the device bottom and top, respectively. These expressions are derived via a set of nonlinear maps between different pairs of impacts, combined with impact conditions that provide jump dis continuities in the velocity. Bifurcation diagrams for the analytical solutions are complemented by a linear stability analysis around the 2:1 asymmetric periodic solutions, and are validated numerically. For smaller incline angles, a second grazing bifurcation is numerically detected, leading to a 3:1 asymmetry. For larger incline angles, period doubling bifurcations precede this bifurcation. The converted electrical energy per impact is reduced for the asymmetric motions, and therefore less desirable under this metric.

Canceled -- Human Sensitive Analytics for Personalized Weight Loss Interventions

Series
Mathematical Biology Seminar
Time
Wednesday, March 25, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yonatan Mintz Department of Industrial and Systems Engineering, Georgia Institute of Technology

One of the most challenging aspects of designing human sensitive systems is in designing systems that assist decision makers in applying an effective intervention to a large group of individuals. This design challenge becomes especially difficult when the decision maker must operate under scarce resources and only partial knowledge of how each individual will react to the intervention.

In this talk, I will consider this problem from the perspective of a clinician that is designing a personalized weight loss program. Despite this focus, the precision analytics framework I propose for designing these interventions is quite general and can apply to many settings where a single coordinator must influence agents who make decisions by maximizing utility functions that depend on prior system states, inputs, and other parameters that are initially unknown. This precision analytics framework involves three steps: first, a predictive model that effectively captures the decision-making process of an agent; second, an optimization algorithm to estimate this model’s parameters for each agent and predict their future decisions; and third, an optimization model that uses these predictions to optimize a set of incentives that will be provided to each agent. A key advantage of this framework is that the calculated incentives are adapted as new information is collected. In the case of personalized weight loss interventions, this means that the framework can leverage patient level data from mobile and wearable sensors over the course of the intervention to personalize the recommended treatment for each individual.

  I will present theoretical results that show that the incentives computed by this approach are asymptotically optimal with respect to a loss function that describes the coordinator's objective.  I will also present an effective decomposition scheme to optimize the agent incentives, where each sub-problem solves the coordinator's problem for a single agent, and the master problem is a pure integer program. To validate this method I will present a numerical study that shows this proposed framework is more cost efficient and clinically effective than simple heuristics in a simulated environment. I will conclude by discussing the results of a randomized control trial (RCT) and pilot study where this precision analytics framework was applied for personalizing exercise goals for UC Berkeley staff and students. The results of these trials show that using personalized step goals calculated by the precision analytics algorithm result in a significant improvement over existing state of the art approaches in a real world setting.

On Liouville systems, Moser Trudinger inequality and Keller-Segel equations of chemotaxis

Series
PDE Seminar
Time
Tuesday, March 24, 2020 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Gershon WolanskyIsrael Institute of Technology
The Liouville equation is a semi-linear elliptic equation of exponential non-linearity. Its non-local version is a steady state of the Keller-Segel equation representing the distribution of living cells, such as slime molds. I will represent an extension of this equation to multi-agent systems and discuss some associated critical phenomena, and recent results with Debabrata Karmakar on the parabolic Keller segel system and its asymptotics in both critical and non-critical cases.

Pages