Seminars and Colloquia by Series

Matrix generalization of the cubic Szegő equation

Series
Analysis Seminar
Time
Wednesday, March 27, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ruoci SunGeorgia Tech

This presentation is devoted to studying matrix solutions of the cubic Szegő equation, leading to the matrix Szegő equation on the 1-d torus and on the real line. The matrix Szegő equation enjoys a Lax pair structure, which is slightly different from the Lax pair structure of the cubic scalar Szegő equation introduced in Gérard-Grellier [arXiv:0906.4540]. We can establish an explicit formula for general solutions both on the torus and on the real line of the matrix Szegő equation. This presentation is based on the works Sun [arXiv:2309.12136arXiv:2310.13693].

Matroids on graphs (Daniel Bernstein, Tulane)

Series
Graph Theory Seminar
Time
Tuesday, March 26, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel BernsteinTulane University

Many problems in rigidity theory and matrix completion boil down to finding a nice combinatorial description of some matroid supported on the edge set of a complete (bipartite) graph. In this talk, I will give many such examples. My goal is to convince you that a general theory of matroids supported on graphs is needed and to give you a sense of what that could look like.

Gradient Elastic Surfaces and the Elimination of Fracture Singularities in 3D Bodies

Series
PDE Seminar
Time
Tuesday, March 26, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Casey Rodriguez University of North Carolina at Chapel Hill

In this talk, we give an overview of recent work in gradient elasticity.  We first give a friendly introduction to gradient elasticity—a mathematical framework for understanding three-dimensional bodies that do not dissipate a form of energy during deformation. Compared to classical elasticity theory, gradient elasticity incorporates higher spatial derivatives that encode certain microstructural information and become significant at small spatial scales. We then discuss a recently introduced theory of three-dimensional Green-elastic bodies containing gradient elastic material boundary surfaces. We then indicate how the resulting model successfully eliminates pathological singularities inherent in classical linear elastic fracture mechanics, presenting a new and geometric alternative theory of fracture.

Function approximation with one-bit Bernstein polynomials and one-bit neural networks

Series
Applied and Computational Mathematics Seminar
Time
Monday, March 25, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005 and https://gatech.zoom.us/j/98355006347
Speaker
Weilin LiCity College of New York
The celebrated universal approximation theorems for neural networks typically state that every sufficiently nice function can be arbitrarily well approximated by a neural network with carefully chosen real parameters. With the emergence of large neural networks and a desire to use them on low power devices, there has been increased interest in neural network quantization (i.e., the act of replacing its real parameters with ones from a much smaller finite set). In this talk, we ask whether it is even possible to quantize neural networks without sacrificing their approximation power, especially in the extreme one-bit {+1,-1} case? We present several naive quantization strategies that yield universal approximation theorems by quantized neural networks, and discuss their advantages/disadvantages. From there, we offer an alternative approach based on Bernstein polynomials and show that {+1,-1} linear combinations of multivariate Bernstein polynomials can efficiently approximate smooth functions. This strategy can be implemented by means of a one-bit neural network and computed from point samples/queries. Joint work with Sinan Gunturk.

 

Welschinger Signs and the Wronski Map (New conjectured reality)

Series
Algebra Seminar
Time
Monday, March 25, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Frank SottileTexas A&M University

Please Note: There will be a pre-seminar (aimed toward grad students and postdocs) from 11:00 am to 11:30 am in Skiles 005.

A general real rational plane curve C of degree d has 3(d-2) flexes and (d-1)(d-2)/2 complex double points. Those double points lying in RP^2 are either nodes or solitary points. The Welschinger sign of C is (-1)^s, where s is the number of solitary points. When all flexes of C are real, its parameterization comes from a point on the Grassmannian under the Wronskii map, and every parameterized curve with those flexes is real (this is the Mukhin-Tarasov-Varchenko Theorem). Thus to C we may associate the local degree of the Wronskii map, which is also 1 or -1. My talk will discuss work with Brazelton and McKean towards a possible conjecture that these two signs associated to C agree, and the challenges to gathering evidence for this.

Enhanced diffusion for time-periodic alternating shear flows

Series
CDSNS Colloquium
Time
Friday, March 15, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Kyle LissDuke

The dynamics of a passive scalar, such as temperature or concentration, transported by an incompressible flow can be modeled by the advection-diffusion equation. Advection often results in the formation of complicated, small-scale structures and can result in solutions relaxing to equilibrium at a rate much faster than the corresponding heat equation in regimes of weak diffusion. This phenomenon is typically referred to as enhanced diffusion. In this talk, I will discuss a joint work with Tarek Elgindi and Jonathan Mattingly in which we construct an example of a divergence-free velocity field on the two-dimensional torus that results in optimal enhanced diffusion.  The flow consists of time-periodic, alternating piece-wise linear shear flows. The proof is based on the probabilistic representation formula for the advection-diffusion equation, a discrete time approximation, and ideas from hyperbolic dynamics.

Colorful Borsuk--Ulam Theorems (Zoe Wellner, CMU)

Series
Combinatorics Seminar
Time
Friday, March 15, 2024 - 15:15 for 1 hour (actually 50 minutes)
Location
Speaker
Zoe WellnerCarnegie Mellon University

 The classical Borsuk--Ulam theorem states that for any continuous map  from the sphere to Euclidean space, $f\colon S^d\to R^d$, there is a pair of antipodal points that are identified, so $f(x)=f(-x)$. We prove a colorful generalization of the Borsuk–Ulam theorem. The classical result has many applications and consequences for combinatorics and discrete geometry and we in turn prove colorful generalizations of these consequences such as the colorful ham sandwich theorem, which allows us to prove a recent result of B\'{a}r\'{a}ny, Hubard, and Jer\'{o}nimo on well-separated measures as a special case, and Brouwer's fixed point theorem, which allows us to prove an alternative between KKM-covering results and Radon partition results.  This is joint work with Florian Frick.

Riemannian geometry and contact topology II

Series
Geometry Topology Working Seminar
Time
Friday, March 15, 2024 - 14:00 for 2 hours
Location
Skiles 006
Speaker
John EtnyreGeorgia Tech

This series of talks will discuss connections between Riemannian geometry and contact topology. Both structures have deep connections to the topology of 3-manifolds, but there has been little study of the interactions between them (at least the implications in contact topology). We will see that there are interesting connections between curvature and properties of contact structures. The talks will give a brief review of both Riemannian geometry and contact topology and then discuss various was one might try to connect them. There will be many open problems discussed (probably later in the series). 

Optimal transport map estimation in general function spaces

Series
Stochastics Seminar
Time
Thursday, March 14, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jonathan Niles-WeedNew York University

We present a unified methodology for obtaining rates of estimation of optimal transport maps in general function spaces. Our assumptions are significantly weaker than those appearing in the literature: we require only that the source measure P satisfy a Poincare inequality and that the optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy can be controlled. As a special case, we recover known estimation rates for Holder transport maps, but also obtain nearly sharp results in many settings not covered by prior work. For example, we provide the first statistical rates of estimation when P is the normal distribution, between log-smooth and strongly log-concave distributions, and when the transport map is given by an infinite-width shallow neural network. (joint with Vincent Divol and Aram-Alexandre Pooladian.)

 

Virtual Knot Theory and the Jones Polynomial

Series
Geometry Topology Student Seminar
Time
Wednesday, March 13, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jacob GuyneeGeorgia Tech

Virtual knot theory is a variant of classical knot theory in which one allows a new type of crossing called a "virtual" crossing. It was originally developed by Louis Kauffman in order to study the Jones polynomial but has since developed into its own field and has genuine significance in low dimensional topology. One notable interpretation is that virtual knots are equivalent to knots in thickened surfaces. In this talk we'll introduce virtual knots and show why they are a natural extension of classical knots. We will then discuss what virtual knot theory can tell us about the both the classical Jones polynomial and its potential extensions to knots in arbitrary 3-manifolds. An important tool we will use throughout the talk is the knot quandle, a classical knot invariant which is complete up to taking mirror images.

Pages