Seminars and Colloquia by Series

Computation of high-order normal forms in diffeomorphisms

Series
CDSNS Colloquium
Time
Friday, October 20, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Joan GimenoGeorgia Tech

This talk will delve into a method specifically designed for
constructing high-order normal forms in Poincaré maps with high-order
precision and without any major assumption or structure of the
dynamical system itself. We will use the result to generate explicit
twist maps, calculating invariant tori, and determining the flying
time expansions around an elliptic fixed point of a Poincaré map. In
particular, this approach is able to check some non-degenerate
conditions in perturbation theory.

Electromagnetism and Falling Cats II

Series
Geometry Topology Working Seminar
Time
Friday, October 20, 2023 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Daniel IrvineGeorgia Institute of Technology

In this talk I will continue to develop a parallel between the classical field theory of electromagnetism and geometric mechanics of animal locomotion. The focus of the previous talk was on electromagnetism, and the focus of this talk will be on the geometric mechanics of animal locomotion. We will investigate the aphorism that a cat dropped (from a safe height) upside-down always lands on her feet. I will explain how non-trivial topology of the configuration space of the cat can act as a "source" of locomotion.

No prior knowledge of classical field theory will be assumed. I will rely on some results from part 1, but I will review the relevant definitions.

On the spectral synthesis for the unit circle in ${\mathcal F} L_s^q ({\mathbf R}^2)$

Series
Analysis Seminar
Time
Wednesday, October 18, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
TBA
Speaker
Masaharu KobayashiHokkaido University

Let ${\mathcal F}L^q_s ({\mathbf R}^2)$ denote the set of all tempered distributions $f \in {\mathcal S}^\prime ({\mathbf R}^2)$ such that the norm $ \| f \|_{{\mathcal F}L^q_s} = (\int_{{\mathbf R}^2}\, ( |{\mathcal F}[f](\xi)| \,( 1+ |\xi| )^s )^q\, d \xi )^{ \frac{1}{q} }$ is finite, where ${\mathcal F}[f]$ denotes the Fourier transform of $f$. We investigate the spectral synthesis for the unit circle $S^1 \subset {\mathbf R}^2$ in ${\mathcal F}L^q_s ({\mathbf R}^2)$ with $1\frac{2}{q^\prime}$, where $q^\prime$ denotes the conjugate exponent of $q$. This is joint work with Prof. Sato (Yamagata University).

An algorithm for comparing Legendrian links

Series
Geometry Topology Seminar
Time
Wednesday, October 18, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ivan DynnikovSteklov Mathematical Institute

The talk is based on my joint works with Maxim Prasolov and Vladimir Shastin, where we studied the relation between rectangular diagrams of links and Legendrian links. This relation allows for a complete classification of exchange classes of rectangular diagrams in terms of equivalence classes of Legendrian links and their symmetry groups. Since all rectangular diagrams of given complexity can be searched, this yields a method to algorithmically compare Legendrian links. Of course, the general algorithm has too high complexity for a practical implementation, but in some situations, the most time consuming parts can be bypassed, which allows us to confirm the non-equivalence of Legendrian knots in several previously unresolved cases.

The Acyclic Edge Coloring Conjecture holds asymptotically

Series
Graph Theory Seminar
Time
Tuesday, October 17, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lina LiIowa State University

The Acyclic Edge Coloring Conjecture, posed independently by Fiam\v{c}ik in 1978 and Alon, Sudakov and Zaks in 2001, asserts that every graph can be properly edge colored with $\Delta+2$ colors such that there is no bicolored cycle. Over the years, this conjecture has attracted much attention. We prove that the conjecture holds asymptotically, that is $(1+o(1))\Delta$ colors suffice. This is joint work with Michelle Delcourt and Luke Postle.

The convergence problem in mean field control

Series
PDE Seminar
Time
Tuesday, October 17, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joe JacksonUniversity of Chicago

This talk will be about the convergence problem in mean field control (MFC), i.e. the challenge of rigorously justifying the convergence of certain "symmetric" N-particle control problems towards their mean field counterparts. On the one hand, this convergence problem is already well-understood from a qualitative perspective, thanks to powerful probabilistic techniques based on compactness. On the other hand, quantitative results (i.e. rates of convergence) are more difficult to obtain, in large part because the value function of the mean field problem (which is also the solution to a certain Hamilton-Jacobi equation on the Wasserstein space) may fail to be C^1, even if all the data is smooth. After giving an overview of the convergence problem, I will discuss the results of two recent joint works with Cardaliaguet, Daudin, Delarue, and Souganidis, in which we use some ideas from the theory of viscosity solutions to overcome this lack of regularity and obtain rates of convergence of the N-particle value functions towards the value function of the corresponding MFC problem.

Computing the embedded contact homology chain complex of the periodic open books of positive torus knots

Series
Geometry Topology Seminar
Time
Monday, October 16, 2023 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Morgan WeilerCornell University

In 2016, Hutchings introduced a knot filtration on the embedded contact homology (ECH) chain complex in order to estimate the linking of periodic orbits of the Reeb vector field, with an eye towards applications to dynamics on the disk. Since then, the knot filtration has been computed for certain lens spaces by myself, and the "action-linking" relationship has been studied for generic contact forms on general three-manifolds by Bechara Senior-Hryniewicz-Salomao. In joint work with Jo Nelson, we study dynamics on surfaces with one boundary component by computing the knot filtration on the ECH chain complex of positive torus knots in S^3. This requires us to understand the contact form as both a prequantization orbibundle and as a periodic open book with positive fractional Dehn twist coefficient. We will focus on the latter point of view to describe how the computation works and the prospects for extending it to more general open books.

Strong Bounds for 3-Progressions

Series
Additional Talks and Lectures
Time
Monday, October 16, 2023 - 16:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Zander KelleyUniversity of Illinois Urbana-Champaign

Suppose you have a set $A$ of integers from $\{1, 2, …, N\}$ that contains at least $N / C$ elements.

Then for large enough $N$, must $A$ contain three equally spaced numbers (i.e., a 3-term arithmetic progression)?

In 1953, Roth showed that this is indeed the case when $C \approx \log \log N$, while Behrend in 1946 showed that $C$ can be at most $2^{\sqrt{\log N}}$ by giving an explicit construction of a large set with no 3-term progressions.

Since then, the problem has been a cornerstone of the area of additive combinatorics.

Following a series of remarkable results, a celebrated paper from 2020 due to Bloom and Sisask improved the lower bound on $C$ to $C = (\log N)^{1 + c}$, for some constant $c > 0$.

This talk will describe a new work which shows that the same holds when $C \approx 2^{(\log N)^{1/12}}$, thus getting closer to Behrend's construction.

Based on a joint work with Raghu Meka.

Towards Khovanov homology for links in general 3-manifolds

Series
Geometry Topology Seminar
Time
Monday, October 16, 2023 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sergei GukovCaltech

I will survey recent progress toward Khovanov homology for links in general 3-manifolds based on categorification of $q$-series invariants labeled by Spin$^c$ structures. Much of the talk will focus on the $q$-series invariants themselves. In particular, I hope to explain how to compute them for a general 3-manifold and to describe some of their properties, e.g. relation to other invariants labeled by Spin or Spin$^c$ structures, such as Turaev torsion, Rokhlin invariants, and the "correction terms'' of the Heegaard Floer theory. There are many problems to work on in this relatively new research area. If time permits, I will outline some of them, and, in the context of plumbed 3-manifolds, comment on the relation to lattice cohomology proposed by Akhmechet, Johnson, and Krushkal.

Combinatorial commutative algebra rules

Series
Algebra Seminar
Time
Monday, October 16, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ada Stelzer University of Illinois Urbana-Champaign

Please Note: There will be a pre-seminar (aimed toward grad students and postdocs) from 11:00 am-11:30 am in Skiles 006.

We present an algorithm that generates sets of size equal to the degree of a given projective variety. The steps of this "CCAR" algorithm are individually well-known, but we argue that when combined they form a versatile and under-used method for studying problems in computational algebraic geometry. The latter part of the talk will focus on applying the CCAR algorithm to examples from Schubert calculus.

Pages