Seminars and Colloquia by Series

On the isotypic decomposition of cohomology modules of symmetric semi-algebraic sets

Series
Algebra Seminar
Time
Friday, September 16, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Saugata BasuPurdue
Real sub-varieties and more generally semi-algebraic subsets of $\mathbb{R}^n$ that are stable under the action of the symmetric group on $n$ elements acting on $\mathbb{R}^n$ by permuting coordinates, are expected to be topologically better behaved than arbitrary semi-algebraic sets. In this talk I will quantify this statement by showing polynomial upper bounds on the multiplicities of the irreducible $\mathfrak{S}_n$-representations that appear in the rational cohomology groups of such sets. I will also discuss some algorithmic results on the complexity of computing the equivariant Betti numbers of such sets and sketch some possible connectios with the recently developed theory of FI-modules. (Joint work with Cordian Riener).

A Markov Chain Algorithm for Compression in Self-Organizing Particle Systems

Series
ACO Student Seminar
Time
Friday, September 16, 2016 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sarah CannonGeorgia Tech
I will present work on a new application of Markov chains to distributed computing. Motivated by programmable matter and the behavior of biological distributed systems such as ant colonies, the geometric amoebot model abstracts these processes as self-organizing particle systems where particles with limited computational power move on the triangular lattice. Previous algorithms developed in this setting have relied heavily on leader election, tree structures that are not robust to failures, and persistent memory. We developed a distributed algorithm for the compression problem, where all particles want to gather together as tightly as possible, that is based on a Markov chain and is simple, robust, and oblivious. Tools from Markov chain analysis enable rigorous proofs about its behavior, and we show compression will occur with high probability. This joint work with Joshua J. Daymude, Dana Randall, and Andrea Richa appeared at PODC 2016. I will also present some more recent extensions of this approach to other problems, which is joint work with Marta Andres Arroyo as well.

The size of the boundary in the Eden model

Series
Stochastics Seminar
Time
Thursday, September 15, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael DamronSchool of Mathematics, Georgia Tech
The Eden model, a special case of first-passage percolation, is a stochastic growth model in which an infection that initially occupies the origin of Z^d spreads to neighboring sites at rate 1. Infected sites are colonized permanently; that is, an infected site never heals. It is known that at time t, the infection occupies a set B(t) of vertices with volume of order t^d, and the rescaled set B(t)/t converges to a convex, compact limiting shape. In joint work with J. Hanson and W.-K. Lam, we partially answer a question of K. Burdzy, concerning the order of the size of the boundary of B(t). We show that, in various senses, the boundary is relatively smooth, being typically of order t^{d-1}. This is in contrast to the fractal behavior of interfaces characteristic of percolation models.

Quantitative real algebraic geometry and its applications

Series
School of Mathematics Colloquium
Time
Thursday, September 15, 2016 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Saugata BasuPerdue University
Effective bounds play a very important role in algebraic geometry with many applications. In this talk I will survey recent progress and open questions in the quantitative study ofreal varieties and semi-algebraic sets and their connections with other areas of mathematics -- in particular,connections to incidence geometry via the polynomial partitioning method. I will also discuss some results on the topological complexity of symmetric varieties which have a representation-theoretic flavor. Finally, if time permits I will sketch how some of these results extend to the category of constructible sheaves.

Bloch groups, algebraic K-theory and units

Series
Other Talks
Time
Wednesday, September 14, 2016 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Don ZagierMax Planck Institute for Mathematics Bonn
We will describe an etale version of Bloch groups and regulators which for the case of number fields that take values in quotients of units of their rings of integers. Joint work with Frank Calegari and Stavros Garoufalidis

A weak type estimate for oscillatory singular integrals

Series
Analysis Seminar
Time
Wednesday, September 14, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LaceyGeorgia Tech
The Ricci-Stein theory of singular integrals concerns operators of the form \int e^{i P(y)} f (x-y) \frac {dy}y.The L^p boundedness was established in the early 1980's, and the weak-type L^1 estimate by Chanillo-Christ in 1987. We establish the weak type estimate for the maximal truncations. This method of proof might well shed much more information about the fine behavior of these transforms. Joint work with Ben Krause.

Homological Stability of Automorphism Groups of Free Groups

Series
Geometry Topology Student Seminar
Time
Wednesday, September 14, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Shane ScottGeorgia Tech
Many algebraic results about free groups can be proven by considering a topological model suggested by Whitehead: glue two handlebodies trivially along their boundary to obtain a closed 3-manifold with free fundamental group. The complex of embedded spheres in the manifold gives a combinatorial model for the automorphism group of the free group. We will discuss how Hatcher uses this complex to show that the homology of the automorphism group is (eventually) independent of the rank of the free group.

Exponential systems over sets with a finite measure

Series
Research Horizons Seminar
Time
Wednesday, September 14, 2016 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Shahaf NitzanDepartment of Mathematics, Georgia Institute of Technology

Please Note: Food and Drinks will be provided before the seminar.

A fundamental result in Harmonic Analysis states that many functions defined over the interval [-\pi,\pi] can be decomposed into a Fourier series, that is, decomposed as sums of sines and cosines with integer frequencies. This allows one to describe very complicated functions in a simple way, and therefore provides with a strong tool to study the properties of different families of functions.However, the above decomposition does not hold -- or holds but is not efficient enough-- if the functions are no longer defined over an interval,( e.g. if a function is defined over a union of two disjoint intervals). We will discuss the question of whether similar decompositions are possible also in such cases, with the frequencies of the sines and cosines possibly being no longer integers.

Reading group in Nonequilibrium Statistical Mechanics.

Series
Other Talks
Time
Monday, September 12, 2016 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rafel de la LlaveGeorgia Tech
The goal of this group is to read carefully the book "Introduction to Chaos in non-equilibrium stat. Mechanics". There will be several speakers. AThe first lecture will be a quick introduction to thermodynamics and statistical mechanics for mathematicians. We hope to explain the physical basis of the problems to mathematicians who have no background in physics and also cover some of the mathematical subtleties that are often overlooked in physiscs courses.

Algorithmic interpretations of fractal dimension

Series
Combinatorics Seminar
Time
Monday, September 12, 2016 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 169
Speaker
Anastasios SidiropoulosThe Ohio State University
The computational complexity of many geometric problems depends on the dimension of the input space. We study algorithmic problems on spaces of low fractal dimension. There are several well-studied notions of fractal dimension for sets and measures in Euclidean space. We consider a definition of fractal dimension for finite metric spaces, which agrees with standard notions used to empirically estimate the fractal dimension of various sets. When the fractal dimension of the input is lower than the ambient dimension, we obtain faster algorithms for a plethora of classical problems, including TSP, Independent Set, R-Cover, and R-Packing. Interestingly, the dependence of the performance of these algorithms on the fractal dimension closely resembles the currently best-known dependence on the standard Euclidean dimension. For example, our algorithm for TSP has running time 2^O(n^(1-1/delta) * log(n)), on sets of fractal dimension delta; in comparison, the best-known algorithm for sets in d-dimensional Euclidean space has running time 2^O(n^(1-1/d)).

Pages