Seminars and Colloquia by Series

Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems with Convex Constraints

Series
Applied and Computational Mathematics Seminar
Time
Wednesday, November 13, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
2443 Classroom Klaus and https://gatech.zoom.us/j/94954654170
Speaker
Yangyang XuRensselaer Polytechnic Institute

In this talk, I will present a damped proximal augmented Lagrangian method (DPALM) for solving problems with a weakly-convex objective and convex linear/nonlinear constraints. Instead of taking a full stepsize, DPALM adopts a damped dual stepsize. DPALM can produce a (near) eps-KKT point within eps^{-2} outer iterations if each DPALM subproblem is solved to a proper accuracy. In addition, I will show overall iteration complexity of DPALM when the objective is either a regularized smooth function or in a regularized compositional form. For the former case, DPALM achieves the complexity of eps^{-2.5} to produce an eps-KKT point by applying an accelerated proximal gradient (APG) method to each DPALM subproblem. For the latter case, the complexity of DPALM is eps^{-3} to produce a near eps-KKT point by using an APG to solve a Moreau-envelope smoothed version of each subproblem. Our outer iteration complexity and the overall complexity either generalize existing best ones from unconstrained or linear-constrained problems to convex-constrained ones, or improve over the best-known results on solving the same-structured problems. Furthermore, numerical experiments on linearly/quadratically constrained non-convex quadratic programs and linear-constrained robust nonlinear least squares are conducted to demonstrate the empirical efficiency of the proposed DPALM over several state-of-the art methods.

Indigenous bundles and uniformization

Series
Geometry Topology Student Seminar
Time
Wednesday, November 13, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Akash NarayananGeorgia Tech

The uniformization theorem states that every Riemann surface is a quotient of some subset of the complex projective line by a group of Mobius transformations. However, a number of closely related questions regarding the structure of uniformization maps remain open. For example, it is unclear how one might associate a uniformizing map to a given Riemann surface. In this talk we will discuss an approach to this question due to Gunning by attaching a projective line bundle to a Riemann surface and studying its analytic properties.

Mean viability and 2nd-order Hamilton-Jacobi-Bellman equations

Series
PDE Seminar
Time
Tuesday, November 12, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Christian KellerUniversity of Central Florida
I present a new approach of proving uniqueness for viscosity solutions of fully nonlinear 2nd-order Hamilton-Jacobi-Bellman equations. 
This approach is purely probabilistic. It uses the concept of mean viability and the closely related notion of quasi-contingent solution. 
Unlike all existing methods in the literature, my approach does not rely on finite-dimensional results. 
This is of relevance for genuinely infinite-dimensional open problems.

 

A Hereditary Generalization of the Nordhaus-Gaddum Graphs (Rebecca Whitman)

Series
Graph Theory Seminar
Time
Tuesday, November 12, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Rebecca WhitmanUniversity of California Berkeley

 Nordhaus and Gaddum proved in 1956 that the sum of the chromatic number  of a graph G and its complement is at most |G|+1.  The Nordhaus-Gaddum graphs are the class of graphs satisfying this inequality with equality, and are well-understood. In this paper we consider a hereditary generalization: graphs G for which all induced subgraphs H of G satisfy that the sum of the chromatic numbers of H and its complement are at least |H|. We characterize the forbidden induced subgraphs of this class and find its intersection with a number of common classes, including line graphs. We also discuss chi-boundedness and algorithmic results.

Concave foliated flag structures and Hitchin representations in SL(3,R) by Max Riestenberg

Series
Geometry Topology Seminar
Time
Monday, November 11, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Max RiestenbergMax Plank Institute for Mathematics in the Sciences

In 1992 Hitchin discovered distinguished components of the PSL(d,R) character variety for closed surface groups pi_1S and asked for an interpretation of those components in terms of geometric structures. Soon after, Choi-Goldman identified the SL(3,R)-Hitchin component with the space of convex projective structures on S. In 2008, Guichard-Wienhard identified the PSL(4,R)-Hitchin component with foliated projective structures on the unit tangent bundle T^1S. The case d \ge 5 remains open, and compels one to move beyond projective geometry to flag geometry. In joint work with Alex Nolte, we obtain a new description of the SL(3,R)-Hitchin component in terms of concave foliated flag structures on T^1S. 

Regularized Stein Variational Gradient Flow

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 11, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005 and https://gatech.zoom.us/j/94954654170
Speaker
Ye HeGeorgia Tech

The stein variational gradient descent (SVGD) algorithm is a deterministic particle method for sampling. However, a mean-field analysis reveals that the gradient flow corresponding to the SVGD algorithm (i.e., the Stein Variational Gradient Flow) only provides a constant-order approximation to the Wasserstein gradient flow corresponding to the KL-divergence minimization. In this work, we propose the Regularized Stein Variational Gradient Flow, which interpolates between the Stein Variational Gradient Flow and the Wasserstein gradient flow. We establish various theoretical properties of the Regularized Stein Variational Gradient Flow (and its time-discretization) including convergence to equilibrium, existence and uniqueness of weak solutions, and stability of the solutions. We provide preliminary numerical evidence of the improved performance offered by the regularization.

Enumeration of special divisors on graphs

Series
Algebra Seminar
Time
Monday, November 11, 2024 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Nathan PfluegerAmherst College

Please Note: There will be a pre-seminar at 10:55 am.

Young tableaux arise in the enumerative geometry of linear series on curves in formulas for the Chow class and the holomorphic Euler characteristic of Brill--Noether varieties. I will discuss an intriguing tropical generalization of these two facts: the formulas for Chow class and Euler characteristic of Brill--Noether loci on a general curve occur in the first and last terms of the Ehrhart polynomial of the tropical Brill--Noether loci on a chain of loops. I will speculate on some generalizations and algebraic analogs of this calculation.

Some open problems concerning the dynamics of Earth’s ice sheets

Series
CDSNS Colloquium
Time
Friday, November 8, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Alex RobelGeorgia Tech

Ice sheets are fascinating dynamical systems that flow, fracture and melt on a wide range of time scales, presenting a range of challenging prediction problems with important implications for how coastal communities plan for sea level rise. In this talk, I will introduce a few outstanding problems concerning the evolution of Earth’s ice sheets under climate change. I will start by introduce the classical theory of “marine ice sheet instability” which describes how glacier ice flows from the land to ice which floats on the ocean, and leads to a saddle-node bifurcation in ice sheet size under climate change. Many contemporary predictions of ice sheet change hold that such a bifurcation is currently unfolding at a number of glaciers in Greenland and Antarctica and could lead to runaway ice sheet retreat even if global temperatures stop increasing in the future. I discuss our recent work on whether this bifurcation may actually play out as a sliding-crossing bifurcation, and the role of a stochastic climate system in driving the system through this bifurcation where nonlinearities cause evolution of the leading order moments of the distribution of glacier state.

Graph decompositions, Ramsey theory, and random graphs

Series
Combinatorics Seminar
Time
Friday, November 8, 2024 - 15:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yuval WigdersonETH Zürich

A basic result of probabilistic combinatorics, originally due to Erdős and Rényi, is the determination of the threshold at which the random graph $G_{n,p}$ contains a triangle with high probability. But one can also ask more refined versions of this question, where we ask not just for one triangle but for many triangles which interact in complicated ways. For example, what is the threshold at which we can no longer partition $G_{n,p}$ into two triangle-free subgraphs?


In this talk, I will discuss the proof of the Kohayakawa–Kreuter conjecture, which gives a general answer to all such questions. Rather surprisingly, a key step of the proof is a purely deterministic graph decomposition statement, closely related to classical results such as Nash-Williams' tree decomposition theorem, whose proof uses techniques from combinatorial optimization and structural graph theory.

Based on joint works with Micha Christoph, Eden Kuperwasser, Anders Martinsson, Wojciech Samotij, and Raphael Steiner.

Pages