Seminars and Colloquia by Series

Cohomology of Line Bundles in Positive Characteristic

Series
Job Candidate Talk
Time
Tuesday, January 16, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Keller VandeBogertNotre Dame

The complete flag variety is a fundamental object at the confluence of algebraic geometry, representation theory, and algebra. It is defined to be the space parametrizing certain chains of vector subspaces, and is intimately linked to Grassmannians, incidence varieties, and other important geometric objects of a representation-theoretic flavor. The problem of computing the cohomology of any line bundle on a flag variety in characteristic 0 was solved in the 1950's, culminating in the celebrated Borel--Weil--Bott theorem. The situation in positive characteristic is wildly different, and remains a wide-open problem despite many decades of study. After surveying this topic, I will speak about recent progress on a characteristic-free analogue of the Borel--Weil--Bott theorem through the lens of representation stability and the theory of polynomial functors. This "stabilization" of cohomology, combined with certain universal categorifications of the Jacobi-Trudi identity, has opened the door to concrete computational techniques whose applications include effective vanishing results for Koszul modules, yielding an algebraic counterpart for the failure of Green's conjecture for generic curves in arbitrary characteristic.

Point counting over finite fields and the cohomology of moduli spaces of curves

Series
Job Candidate Talk
Time
Thursday, January 11, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sam PayneUT Austin

Algebraic geometry studies solution sets of polynomial equations. For instance, over the complex numbers, one may examine the topology of the solution set, whereas over a finite field, one may count its points. For polynomials with integer coefficients, these two fundamental invariants are intimately related via cohomological comparison theorems and trace formulas for the action of Frobenius. I will discuss the general framework relating point counting over finite fields to topology of complex algebraic varieties and also present recent applications to the cohomology of moduli spaces of curves that resolve longstanding questions in algebraic geometry and confirm more recent predictions from the Langlands program.

Krylov Subspace Methods and Matrix Functions: new directions in design, analysis, and applications

Series
Job Candidate Talk
Time
Thursday, January 11, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tyler ChenNYU

Krylov subspace methods (KSMs) are among the most widely used algorithms for a number of core linear algebra tasks. However, despite their ubiquity throughout the computational sciences, there are many open questions regarding the remarkable convergence of commonly used KSMs. Moreover, there is still potential for the development of new methods, particularly through the incorporation of randomness as an algorithmic tool. This talk will survey some recent work on the analysis of the well-known Lanczos method for matrix functions and the design of new KSMs for low-rank approximation of matrix functions and approximating partial traces and reduced density matrices. 

 

Metric geometric aspects of Einstein manifolds

Series
Job Candidate Talk
Time
Wednesday, January 10, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005, https://gatech.zoom.us/j/95551591205
Speaker
Ruobing ZhangPrinceton University

This lecture concerns the metric Riemannian geometry of Einstein manifolds, which is a central theme in modern differential geometry and is deeply connected to a large variety of fundamental problems in algebraic geometry, geometric topology, analysis of nonlinear PDEs, and mathematical physics. We will exhibit the rich geometric/topological structures of Einstein manifolds and specifically focus on the structure theory of moduli spaces of Einstein metrics. My recent works center around the intriguing problems regarding the compactification of the moduli space of Einstein metrics, which tells us how Einstein manifolds can degenerate. Such problems constitute the most challenging part in the metric geometry of Einstein manifolds. We will introduce recent major progress in the field. If time permits, I will propose several important open questions.

Geometric Structures for the G_2’ Hitchin Component

Series
Geometry Topology Seminar
Time
Monday, January 8, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Parker EvansRice University

Abstract: Fundamental to our understanding of Teichm\"uller space T(S) of a closed oriented genus $g \geq 2$ surface S are two different perspectives: one as connected  component in the  PSL(2,\R) character variety  \chi(\pi_1S, PSL(2,\R)) and one as the moduli space of marked hyperbolic structures on S. The latter can be thought of as a moduli space of (PSL(2,\R), \H^2) -structures. The G-Hitchin component, denoted Hit(S,G), for G a split real simple Lie group, is a connected component in \chi(\pi_1S, G) that is a higher rank generalization of T(S). In this talk, we discuss a new geometric structures (i.e., (G,X)-structures) interpretation of Hit(S, G_2'), where G_2' is the split real form of the exceptional complex simple Lie group G_2.


After discussing the motivation and background, we will present some of the main ideas of the theorem, including a family of almost-complex curves
that serve as bridge between the geometric structures and representations.

Sums of odd-ly many fractions and the distribution of primes

Series
Number Theory
Time
Wednesday, December 13, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vivian KuperbergETH

Abstract: In this talk, I will discuss new bounds on constrained sets of fractions. Specifically, I will discuss the answer to the following question, which arises in several areas of number theory: For an integer $k \ge 2$, consider the set of $k$-tuples of reduced fractions $\frac{a_1}{q_1}, \dots, \frac{a_k}{q_k} \in I$, where $I$ is an interval around $0$.
How many $k$-tuples are there with $\sum_i \frac{a_i}{q_i} \in \mathbb Z$?

When $k$ is even, the answer is well-known: the main contribution to the number of solutions comes from ``diagonal'' terms, where the fractions $\frac{a_i}{q_i}$ cancel in pairs. When $k$ is odd, the answer is much more mysterious! In ongoing work with Bloom, we prove a near-optimal upper bound on this problem when $k$ is odd. I will also discuss applications of this problem to estimating moments of the distributions of primes and reduced residues.

Probability and variational methods in PDEs — optimal transport, regularity, and universality

Series
Job Candidate Talk
Time
Tuesday, December 12, 2023 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005 and https://gatech.zoom.us/j/96443370732
Speaker
Tobias RiedMax Planck Institute for Mathematics in the Sciences, Liepzig, Germany
In this talk I will present an overview of my research, highlighting in more detail two topics: 
1. A purely variational approach to the regularity theory of optimal transportation, which is analogous to De Giorgi’s strategy for the regularity theory of minimal surfaces. I will show some interesting connections to Wasserstein barycenters, branched transport, and pattern formation in materials science, as well as applications in density functional theory. 
2. Variational methods for a singular stochastic PDE describing the magnetization ripple, a microstructure in thin-film ferromagnets triggered by the poly-crystallinity of the sample. I will describe how the universal character of the magnetization ripple can be addressed using variational methods based on Γ-convergence.

Staircases and cuspidal curves in symplectic four manifolds

Series
School of Mathematics Colloquium
Time
Friday, December 8, 2023 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dusa McDuffBarnard College, Columbia

Please Note: This colloquium will also be the staring talk for the 2023 Tech Topology Conference.

This talk will give an elementary introduction to my joint work with Kyler Siegel that shows how cuspidal curves in a symplectic manifold X such as the complex projective plane determine when an ellipsoid can be symplectically embedded into X.

"SAM as an Optimal Relaxation of Bayes" and "Lie Group updates for Learning Distributions on Machine Learning Parameters"

Series
Applied and Computational Mathematics Seminar
Time
Friday, December 8, 2023 - 11:00 for 1 hour (actually 50 minutes)
Location
https://gatech.zoom.us/j/98355006347
Speaker
Dr. Thomas Moellenhoff and Dr. Eren Mehmet KıralRIKEN

Please Note: Note special time, due to time zone difference from Japan. Joint with SIAM GT Student Chapter Seminar

Part I (SAM as an Optimal Relaxation of Bayes) Dr. Thomas Moellenhoff

Sharpness-aware minimization (SAM) and related adversarial deep-learning methods can drastically improve generalization, but their underlying mechanisms are not yet fully understood. In this talk, I will show how SAM can be interpreted as optimizing a relaxation of the Bayes objective where the expected negative-loss is replaced by the optimal convex lower bound, obtained by using the so-called Fenchel biconjugate. The connection enables a new Adam-like extension of SAM to automatically obtain reasonable uncertainty estimates, while sometimes also improving its accuracy.

Part II (Lie Group updates for Learning Distributions on Machine Learning Parameters) Dr. Eren Mehmet Kıral

I will talk about our recent paper https://arxiv.org/abs/2303.04397 with Thomas Möllenhoff and Emtiyaz Khan, and other related results. Bayesian Learning learns a distribution over the model parameters, allowing for different descriptions of the same data. This is (contrary to classical learning which "bets-it-all" on a single set of parameters in describing a given dataset and making predictions. We focus on classes of distributions which have a transitive Lie group action on them given by pushforwards of an action on the parameter space. I will also specialize to a few concrete Lie groups and show distinct learning behavior.

The Poisson point process and an application to semisimple symmetric spaces

Series
Job Candidate Talk
Time
Thursday, December 7, 2023 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006; Streaming available via zoom
Speaker
Amanda WilkensUT Austin

Please Note: Link to join via Zoom: https://gatech.zoom.us/j/93394018195?pwd=MGJZaWIwQUhVYW9ZZDFoWWFOc29EZz09 Meeting ID: 933 9401 8195 Passcode: SoM

We define and motivate the Poisson point process, which is, informally, a “maximally random” scattering of points in some locally compact, second countable space. We introduce the ideal Poisson--Voronoi tessellation (IPVT), a new random object with intriguing geometric properties when considered on a semisimple symmetric space (the hyperbolic plane, for example). In joint work with Mikolaj Fraczyk and Sam Mellick, we use the IPVT to prove the minimal number of generators of a torsion-free lattice in a higher rank, semisimple Lie group is sublinear in the co-volume of the lattice. We give some intuition for the proof. No prior knowledge on Poisson point processes or symmetric spaces will be assumed.

Pages