Seminars and Colloquia by Series

What is a cusped hyperbolic 3-manifold, and why should I care?

Series
Research Horizons Seminar
Time
Wednesday, November 20, 2013 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dr. Stavros GaroufalidisSchool of Math
Hyperbolic 3-manifolds is a great class of 3-dimensional geometric objects with interesting topology, a rich source of examples (practially one for every knot that you can draw), with arithmetically interesting volumes expressed in terms of dialogarithms of algebraic numbers, and with computer software that allows to manipulate them. Tired of abstract existential mathematics? Interested in concrete 3-dimensional topology and geometry? Or maybe Quantum Topology? Come and listen!

Siegel theorem for fibered holomorphic maps II.

Series
Dynamical Systems Working Seminar
Time
Tuesday, November 19, 2013 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mikel J. de VianaGeorgia Tech
We conclude the proof of the linearization theorem for fibered holomorphic maps by showing that the iteration scheme we proposed converges. If time allows, we will comment on related work by Mario Ponce and generalizations of the theorem for fibered holomorphic maps in higher dimensions.

Ricci curvature for finite Markov chains

Series
PDE Seminar
Time
Tuesday, November 19, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Matthias ErbarUniversity of Bonn
In this talk I will present a new notion of Ricci curvature that applies to finite Markov chains and weighted graphs. It is defined using tools from optimal transport in terms of convexity properties of the Boltzmann entropy functional on the space of probability measures over the graph. I will also discuss consequences of lower curvature bounds in terms of functional inequalities. E.g. we will see that a positive lower bound implies a modified logarithmic Sobolev inequality. This is joint work with Jan Maas.

Combinatorics and complexity of Kronecker coefficients

Series
Job Candidate Talk
Time
Tuesday, November 19, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Greta PanovaUCLA
Kronecker coefficients lie at the intersection of representation theory, algebraic combinatorics and, most recently, complexity theory. They count the multiplicities of irreducible representations in the tensor product of two other irreducible representations of the symmetric group. While their study was initiated almost 75 years, remarkably little is known about them. One of the major problems of algebraic combinatorics is to find an explicit positive combinatorial formula for these coefficients. Recently, this problem found a new meaning in the field of Geometric Complexity Theory, initiated by Mulmuley and Sohoni, where certain conjectures on the complexity of computing and deciding positivity of Kronecker coefficients are part of a program to prove the "P vs NP" problem. In this talk we will give an overview of this topic and we will describe several problems with some results on different aspects of the Kronecker coefficients. We will explore Saxl conjecture stating that the tensor square of certain irreducible representation of S_n contains every irreducible representation, and present a criterion for determining when a Kronecker coefficient is nonzero. In a more combinatorial direction, we will show how to prove certain unimodality results using Kronecker coefficients, including the classical Sylvester's theorem on the unimodality of q-binomial coefficients (as polynomials in q). We will also present some results on complexity in light of Mulmuley's conjectures. The presented results are based on joint work with Igor Pak and Ernesto Vallejo.

Families of lattice-polarized K3 surfaces

Series
Algebra Seminar
Time
Monday, November 18, 2013 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Wei HoColumbia University
There are well-known explicit families of K3 surfaces equipped with a low degree polarization, e.g., quartic surfaces in P^3. What if one specifies multiple line bundles instead of a single one? We will discuss representation-theoretic constructions of such families, i.e., moduli spaces for K3 surfaces whose Neron-Severi groups contain specified lattices. These constructions, inspired by arithmetic considerations, also involve some fun geometry and combinatorics. This is joint work with Manjul Bhargava and Abhinav Kumar.

The proetale topology

Series
Algebra Seminar
Time
Monday, November 18, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bhargav BhattInstitute for Advanced Study
Abstract: (joint work with Peter Scholze) The proetale topology is a Grothendieck topology that is closely related to the etale topology, yet better suited for certain "infinite" constructions, typically encountered in l-adic cohomology. I will first explain the basic definitions, with ample motivation, and then discuss applications. In particular, we will see why locally constant sheaves in this topology yield a fundamental group that is rich enough to detect all l-adic local systems through its representation theory (which fails for the groups constructed in SGA on the simplest non-normal varieties, such as nodal curves).

Fixed points of unitary decomposition complexes

Series
Geometry Topology Seminar
Time
Monday, November 18, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vesna StojanoskaMIT
For a fixed integer n, consider the nerve L_n of the topological poset of orthogonal decompositions of complex n-space into proper orthogonal subspaces. The space L_n has an action by the unitary group U(n), and we study the fixed points for subgroups of U(n). Given a prime p, we determine the relatively small class of p-toral subgroups of U(n) which have potentially non-empty fixed points. Note that p-toral groups are a Lie analogue of finite p-groups, thus if we are interested in the U(n)-space L_n at a fixed prime p, only the p-toral subgroups of U(n) play a significant role. The space L_n is strongly related to the K-theory analogues of the symmetric powers of spheres and the Weiss tower for the functor that assigns to a vector space V the classifying space BU(V). Our results are a step toward a K-theory analogue of the Whitehead conjecture as part of the program of Arone-Dwyer-Lesh. This is joint work with J.Bergner, R.Joachimi, K.Lesh, K.Wickelgren.

Quantum scissors and single photon states

Series
Math Physics Seminar
Time
Friday, November 15, 2013 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Brian KennedyGT Physics
Sources of single photons (as opposed to sources which produce on average a single photon) are of great current interest for quantum information processing. Perhaps surprisingly, it is not easy to produce a single photon efficiently and in a controlled way. Following earlier progress, recent experimental activity has resulted in the production of single photons by taking advantage of strong inter-particle interactions in cold atomic gases.I will show how the systematic use of the method of steepest descents can be used to understand the dynamics of the single photon source developed here at Georgia Tech and how this describes a kind of quantum scissors effect. In addition to the mathematical results, I will present the background quantum mechanics in a form suitable for a general audience. Joint work with Francesco Bariani and Paul Goldbart.

A Hajnal-Szemeredi-type theorem for uniform hypergraphs

Series
Combinatorics Seminar
Time
Friday, November 15, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dmitry ShabanovMoscow Institute of Physics and Technology
An equitable two-coloring for a hypergraph is a proper vertex coloring such that the cardinalities of color classes differ by at most one. The well-known Hajnal-Szemerédi theorem states that any graph G with maximum vertex degree d admits an equitable coloring with d + 1 colors. In our talk we shall discuss a similar question for uniform hypergraphs and present a new bound in a Hajnal-Szemerédi-type theorem for some classes of uniform hypergraphs. The proof is based on the random recoloring method and the results of Lu and Székely concerning negative correlations in the space of random bijections.

Chern-Weil theory for vector bundles

Series
Geometry Topology Student Seminar
Time
Friday, November 15, 2013 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006.
Speaker
Amey KalotiGeorgia Tech.
Given a vector bundle over a smooth manifold, one can give an alternate definition of characteristic classes in terms of geometric data, namely connection and curvature. We will see how to define Chern classes and Euler class for the a vector bundle using this theory developed in mid 20th century.

Pages