Seminars and Colloquia by Series

Inverse Theory of Set Addition

Series
ACO Student Seminar
Time
Friday, September 27, 2013 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ernie CrootSchool of Math, Georgia Tech
If A is a set of n integers such that the sumset A+A = {a+b : a,b in A} has size 2n-1, then it turns out to be relatively easy to prove that A is an arithmetic progression {c, c+d, c+2d, c+3d, ..., c+(n-1)d}. But what if you only know something a bit weaker, say |A+A| < 10 n, say? Well, then there is a famous theorem due to G. Freiman that says that A is a "dense subset of a generalized arithmetic progression" (whatever that is -- you'll find out). Recently, this subject has been revolutionized by some remarkable results due to Tom Sanders. In this talk I will discuss what these are.

Superimposed codes

Series
Joint School of Mathematics and ACO Colloquium
Time
Thursday, September 26, 2013 - 16:30 for 1 hour (actually 50 minutes)
Location
Skyles 005
Speaker
Zoltan FurediRenyi Institute of Mathematics of the Hungarian Academy of Sciences

Please Note: Refreshements served at 4:00pm

There are many instances in Coding Theory when codewords must be restored from partial information, like defected data (error correcting codes), or some superposition of the strings.These lead to superimposed codes, close relatives of group testing problems.There are lots of versions and related problems, likeSidon sets, sum-free sets, union-free families, locally thin families, cover-free codes and families, etc.We discuss two cases {\it cancellative} and {\it union-free} codes.A family of sets $\mathcal F$ (and the corresponding code of0-1 vectors) is called {\bf union-free} if $A\cup B = C\cup D$ and $A,B,C,D\in \mathcal F$ imply $\{ A,B\}=\{ C, D \}$.$\mathcal F$ is called $t$-{\bf cancellative}if for all distict $t+2$ members $A_1, \dots, A_t$ and $B,C\in \mathcal F$ $$A_1\cup\dots \cup A_t\cup B \neq A_1\cup \dots A_t \cup C. $$Let $c_t(n)$ be the size of the largest $t$-cancellative code on $n$elements. We significantly improve the previous upper bounds of Alon, Monti, K\"orner and Sinaimeri, and introduce a method to deal with such problems, namely to investigate first the constant weight case (i.e., uniform hypergraphs).

The Power of Localization for Active and Passive Learning of Linear Separators

Series
Stochastics Seminar
Time
Thursday, September 26, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Nina BalcanGeorgia Tech College of Computing
We analyze active learning algorithms, which only receive the classifications of examples when they ask for them, and traditional passive (PAC) learning algorithms, which receive classifications for all training examples, under log-concave and nearly log-concave distributions. By using an aggressive localization argument, we prove that active learning provides an exponential improvement over passive learning when learning homogeneous linear separators in these settings. Building on this, we then provide a computationally efficient algorithm with optimal sample complexity for passive learning in such settings. This provides the first bound for a polynomial-time algorithm that is tight for an interesting infinite class of hypothesis functions under a general class of data-distributions, and also characterizes the distribution-specific sample complexity for each distribution in the class. We also illustrate the power of localization for efficiently learning linear separators in two challenging noise models (malicious noise and agnostic setting) where we provide efficient algorithms with significantly better noise tolerance than previously known.

Symplectic fillings of 3-torus.

Series
Geometry Topology Student Seminar
Time
Wednesday, September 25, 2013 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006.
Speaker
Amey KalotiGeorgia Tech
The aim of this talk is to give fairly self contained proof of the following result due to Eliashberg. There is exactly one holomorphically fillable contact structure on $T^3$. If time permits we will try to indicate different notions of fillability of contact manifolds in dimension 3.

Modeling Stochasticity and Variability in Gene Regulatory Networks with Applications to the Development of Optimal Intervention Strategies

Series
Mathematical Biology Seminar
Time
Wednesday, September 25, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles Bld Room 005
Speaker
D. MurrugarraSoM, GaTech
Modeling stochasticity in gene regulation is an important and complex problem in molecular systems biology due to probabilistic nature of gene regulation. This talk will introduce a stochastic modeling framework for gene regulatory networks which is an extension of the Boolean modeling approach. This framework incorporates propensity parameters for activation and degradation and is able to capture the cell-to-cell variability. It will be presented in the context of finite dynamical systems, where each gene can take on a finite number of states, and where time is also a discrete variable. Applications using methods from control theory for Markov decision processes will be presented for the purpose of developing optimal intervention strategies. A background to stochastic modeling will be given and the methods will be applied to the p53-mdm2 complex.

Independent sets in triangle-free planar graphs

Series
Graph Theory Seminar
Time
Tuesday, September 24, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zdenek DvorakCharles University
By the 4-color theorem, every planar graph on n vertices has an independent set of size at least n/4. Finding a simple proof of this fact is a long-standing open problem. Furthermore, no polynomial-time algorithm to decide whether a planar graph has an independent set of size at least (n+1)/4 is known. We study the analogous problem for triangle-free planar graphs. By Grotzsch' theorem, each such graph on n vertices has an independent set of size at least n/3, and this can be easily improved to a tight bound of (n+1)/3. We show that for every k, a triangle-free planar graph of sufficiently large tree-width has an independent set of size at least (n+k)/3, thus giving a polynomial-time algorithm to decide the existence of such a set. Furthermore, we show that there exists a constant c < 3 such that every planar graph of girth at least five has an independent set of size at least n/c.Joint work with Matthias Mnich.

Congruence subgroups of braid groups

Series
Geometry Topology Seminar
Time
Monday, September 23, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tara BrendleU Glasgow
The so-called integral Burau representation gives a symplectic representation of the braid group. In this talk we will discuss the resulting congruence subgroups of braid groups, that is, preimages of the principal congruence subgroups of the symplectic group. In particular, we will show that the level 4 congruence braid group is equal to the group generated by squares of Dehn twists. One key tool is a "squared lantern relation" amongst Dehn twists. Joint work with Dan Margalit.

James periodicity and the EHP sequence III

Series
Geometry Topology Working Seminar
Time
Friday, September 20, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kirsten Wickelgren Georgia Tech
Allowing formal desuspensions of maps and objects takes the category of topological spaces to the category of spectra, where cohomology is naturally represented. The EHP spectral sequence encodes how far one can desuspend maps between spheres. It's among the most useful tools for computing homotopy groups of spheres. RP^infty has a cell structure with a cell in each dimension and with attaching maps of degrees ...020202... Note that this sequence is periodic. In fact, it is more than the degrees of these maps which are periodic and a map of Snaith relates this periodicity to the EHP sequence.We will develop the EHP sequence, James periodicity and the relationship between the two.

The Kac Model Coupled to a Thermostat

Series
Math Physics Seminar
Time
Thursday, September 19, 2013 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ranjini VaidyanathanGeorgia Tech
We consider a model of randomly colliding particles interacting with a thermal bath. Collisions between particles are modeled via the Kac master equation while the thermostat is seen as an infinite gas at thermal equilibrium at inverse temperature \beta. The system admits the canonical distribution at inverse temperature \beta as the unique equilibrium state. We prove that the any initial distribution approaches the equilibrium distribution exponentially fast both by computing the gap of the generator of the evolution, in a proper function space, as well as by proving exponential decay in relative entropy. We also show that the evolution propagates chaos and that the one-particle marginal, in the large system limit, satisfies an effective Boltzmann-type equation. This is joint work with Federico Bonetto and Michael Loss.

Pages