Seminars and Colloquia by Series

Random Matrix Theory and the Angles Between Random Subspaces

Series
Stochastics Seminar
Time
Thursday, September 19, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Brendan FarrellCaltech
We consider two approaches to address angles between random subspaces: classical random matrix theory and free probability. In the former, one constructs random subspaces from vectors with independent random entries. In the latter, one has historically started with the uniform distribution on subspaces of appropriate dimension. We point out when these two approaches coincide and present new results for both. In particular, we present the first universality result for the random matrix theory approach and present the first result beyond uniform distribution for the free probability approach. We further show that, unexpectedly, discrete uncertainty principles play a natural role in this setting. This work is partially with L. Erdos and G. Anderson.

Well-quasi-ordering of directed graphs

Series
Graph Theory Seminar
Time
Thursday, September 19, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Paul WollanSchool of Mathematics, Georgia Tech and University of Rome, Italy
While Robertson and Seymour showed that graphs are well-quasi-ordered under the minor relation, it is well known that directed graphs are not. We will present an exact characterization of the minor-closed sets of directed graphs which are well-quasi-ordered. This is joint work with M. Chudnovsky, S. Oum, I. Muzi, and P. Seymour.

Probability and Dynamics: A survey and open problems

Series
School of Mathematics Colloquium
Time
Thursday, September 19, 2013 - 11:00 for 1 hour (actually 50 minutes)
Location
Skyles 006
Speaker
Manfred DenkerPenn State University
Probabilistic methods in dynamical systems is a popular area of research. The talk will present the origin of the interplay between both subjects with Poincar\'e's unpredictability and Kolmogorov's axiomatic treatment of probability, followed by two main breakthroughs in the 60es by Ornstein and Gordin. Present studies are concerned with two main problems: transferring probabilistic laws and laws for 'smooth' functions. Recent results for both type of questions are explained at the end.

Destruction of Invariant Circles in the Standard Map

Series
Research Horizons Seminar
Time
Wednesday, September 18, 2013 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Adam FoxSchool of Math
The standard map is a widely studied area-preserving system with application to many natural phenomena. When unperturbed, every orbit of this map lies on an invariant circle. In this talk we will explore what happens to these circles when the system is perturbed, employing both analytical and numerical tools. I will conclude by discussing some active areas of current research.

A real analogue of the Bezout inequality and connected components of sign conditions

Series
Algebra Seminar
Time
Monday, September 16, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sal BaroneGeorgia Tech

Please Note: Joint work with Saugata Basu sbasu@math.purdue.edu On a real analogue of Bezout inequality and the number of connected components of sign conditions. http://arxiv.org/abs/1303.1577

It is a classical problem in real algebraic geometry to try to obtain tight bounds on the number of connected components of semi-algebraic sets, or more generally to bound the higher Betti numbers, in terms of some measure of complexity of the polynomials involved (e.g., their number, maximum degree, and number of variables or so-called dense format). Until recently, most of the known bounds relied ultimately on the Oleinik-Petrovsky-Thom-Milnor bound of d(2d-1)^{k-1} on the number of connected components of an algebraic subset of R^k defined by polynomials of degree at most d, and hence the resulting bounds depend on only the maximum degree of the polynomials involved. Motivated by some recent results following the Guth-Katz solution to one of Erdos' hard problems, the distinct distance problem in the plane, we proved that in fact a more refined dependence on the degrees is possible, namely that the number of connected components of sign conditions, defined by k-variate polynomials of degree d, on a k'-dimensional variety defined by polynomials of degree d_0, is bounded by (sd)^k' d_0^{k−k'} O(1)^k. Our most recent work takes this refinement of the dependence on the degrees even further, obtaining what could be considered a real analogue to the classical Bezout inequality over algebraically closed fields.

The decategorification of bordered Khovanov homology

Series
Geometry Topology Seminar
Time
Monday, September 16, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lawrence RobertsUniversity of Alabama
Khovanov homology is an invariant of a link in S^3 which refines the Jones polynomial of the link. Recently I defined a version of Khovanov homology for tangles with interesting locality and gluing properties, currently called bordered Khovanov homology, which follows the algebraic pattern of bordered Floer homology. After reviewing the ideas behind bordered Khovanov homology, I will describe what appears to be the Jones polynomial-like structure which bordered Khovanov homology refines.

Affine unfoldings of convex polyhedra

Series
Combinatorics Seminar
Time
Friday, September 13, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohammad GhomiSchool of Mathematics, Georgia Tech
A well-known problem in geometry, which may be traced back to the Renaissance artist Albrecht Durer, is concerned with cutting a convex polyhedral surface along some spanning tree of its edges so that it may be isometrically embedded, or developed without overlaps, into the plane. We show that this is always possible after an affine transformation of the surface. In particular, unfoldability of a convex polyhedron does not depend on its combinatorial structure, which settles a problem of Croft, Falconer, and Guy. Among other techniques, the proof employs a topological characterization for embeddings among immersed planar disks.

James periodicity and the EHP sequence II

Series
Geometry Topology Working Seminar
Time
Friday, September 13, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kirsten Wickelgren Georgia Tech

Please Note: Note this is a 1 hour seminar (not the usual 2 hours).

Allowing formal desuspensions of maps and objects takes the category of topological spaces to the category of spectra, where cohomology is naturally represented. The EHP spectral sequence encodes how far one can desuspend maps between spheres. It's among the most useful tools for computing homotopy groups of spheres. RP^infty has a cell structure with a cell in each dimension and with attaching maps of degrees ...020202... Note that this sequence is periodic. In fact, it is more than the degrees of these maps which are periodic and a map of Snaith relates this periodicity to the EHP sequence.We will develop the EHP sequence, James periodicity and the relationship between the two.

Fourier PCA

Series
ACO Student Seminar
Time
Friday, September 13, 2013 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ying XiaoCollege of Computing, Georgia Tech
Fourier PCA is Principal Component Analysis of the covariance matrix obtained after reweighting a distribution with a random Fourier weighting. It can also be viewed as PCA applied to the Hessian matrix of functions of the characteristic function of the underlying distribution. Extending this technique to higher derivative tensors and developing a general tensor decomposition method, we derive the following results: (1) a polynomial-time algorithm for general independent component analysis (ICA), not requiring the component distributions to be discrete or distinguishable from Gaussian in their fourth moment (unlike in the previous work); (2) the first polynomial-time algorithm for underdetermined ICA, where the number of components can be arbitrarily higher than the dimension; (3) an alternative algorithm for learning mixtures of spherical Gaussians with linearly independent means. These results also hold in the presence of Gaussian noise.

Why the brain wiring's might use more than one decay scale

Series
Mathematical Biology Seminar
Time
Thursday, September 12, 2013 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
R.StoopInst. of Neuroinformatics, ETH, Zurich
We study to what extent cortical columns with their particular wiring, could boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of the expected enhancement. It is on a mesoscopic?intercolumnar?scale that the wiring among the columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks and we exhibit corroborating evidence for this suggestion. Despite the current emphasis on simpler, e.g., critical, networks, networks with more than one connectivity decay behavior may be the rule rather than the exception. Ref: Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains Ralph Stoop, Victor Saase, Clemens Wagner, Britta Stoop, and Ruedi Stoop, PRL 108105 (2013)

Pages