Seminars and Colloquia by Series

The arc complex and contact geometry: non-destabilizable planar open book decompositions of the tight contact 3-sphere

Series
Geometry Topology Seminar
Time
Wednesday, September 4, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Youlin LiGeorgia Tech
We introduce the (homologically essential) arc complex of a surface as a tool for studying properties of open book decompositions and contact structures. After characterizing destabilizability in terms of the essential translation distance of the monodromy of an open book we given an application of this result to show that there are planer open books of the standard contact structure on the 3-sphere with 5 (or any number larger than 5) boundary components that do not destabilize. We also show that any planar open book with 4 or fewer boundary components does destabilize. This is joint work with John Etnyre.

Construction of quasi-periodic attractors for systems with strong damping

Series
PDE Seminar
Time
Tuesday, September 3, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Renato CallejaUNAM, Mexico
I will present a method for constructing periodic or quasi-periodic solutions for forced strongly dissipative systems. Our method applies to the varactor equation in electronic engineering and to the forced non-linear wave equation with a strong damping term proportional to the wave velocity. The strong damping leads to very few small divisors which allows to prove the existence by using a fixed point contraction theorem. The method also leads to efficient numerics. This is joint work with A. Celletti, L. Corsi, and R. de la Llave.

Mutual Attractions of Floating Objects: An Idealized Example

Series
School of Mathematics Colloquium
Time
Tuesday, September 3, 2013 - 11:00 for 1 hour (actually 50 minutes)
Location
Skyles 006
Speaker
Robert FinnStanford University
During the 17th Century the French priest and physicist Edme Mariotte observed that objects floating on a liquid surface can attract or repel each other, and he attempted (without success!) to develop physical laws describing the phenomenon. Initial steps toward a consistent theory came later with Laplace, who in 1806 examined the configuration of two infinite vertical parallel plates of possibly differing materials, partially immersed in an infinite liquid bath and rigidly constrained. This can be viewed as an instantaneous snapshot of an idealized special case of the Mariotte observations. Using the then novel concept of surface tension, Laplace identified particular choices of materials and of plate separation, for which the plates would either attract or repel each other. The present work returns to that two‐plate configuration from a more geometrical point of view, leading to characterization of all modes of behavior that can occur. The results lead to algorithms for evaluating the forces with arbitrary precision subject to the physical hypotheses, and embrace also some surprises, notably the remarkable variety of occurring behavior patterns despite the relatively few available parameters. A striking limiting discontinuity appears as the plates approach each other. A message is conveyed, that small configurational changes can have large observational consequences, and thus easy answers in less restrictive circumstances should not be expected.

Component games on regular graphs

Series
Combinatorics Seminar
Time
Friday, August 30, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Rani HodSchool of Mathematics, Georgia Tech
We study the Maker-Breaker component game, played on the edge set of a regular graph. Given a graph G, the s-component (1:b) game is defined as follows: in every round Maker claims one free edge of G and Breaker claims b free edges. Maker wins this game if her graph contains a connected component of size at least s; otherwise, Breaker wins the game. For all values of Breaker's bias b, we determine whether Breaker wins (on any d-regular graph) or Maker wins (on almost every d-regular graph) and provide explicit winning strategies for both players. To this end, we prove an extension of a theorem by Gallai-Hasse-Roy-Vitaver about graph orientations without long directed simple paths. Joint work with Alon Naor.

How to Land a Job Outside of Academia

Series
Research Horizons Seminar
Time
Wednesday, August 28, 2013 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dr. Matthew ClarkNorthrop Grumman
Have you heard the urban legend that an experienced college recruiter can make an initial decision on whether or not to read your resume in less than six seconds? Would you like to see if your current resume can survive the six-second glance?Would you like to improve your chances of surviving the initial cut? Do you know what happens to your resume once you hand it to the recruiter? How do you craft a resume that competes with 100,000 other resumes? Dr. Matthew Clark has supported college recruiting efforts for a variety of large corporations and is a master at sorting resumes in six seconds or under. Join us August 28th, 2013 in Skiles 005 at noon for a discussion of how most industry companies handle resumes, what types of follow up activities are worth-while, and, how to improve your chances of having your resume pass the "six second glance".

Cascades and Social Influence on Networks

Series
Mathematical Biology Seminar
Time
Wednesday, August 28, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles Bld Room 005
Speaker
Mason PorterOxford, UK
I discuss "simple" dynamical systems on networks and examine how network structure affects dynamics of processes running on top of networks. I consider results based on "locally tree-like" and/or mean-field and pair approximations and examine when they seem to work well, what can cause them to fail, and when they seem to produce accurate results even though their hypotheses are violated fantastically. I'll also present a new model for multi-stage complex contagions--in which fanatics produce greater influence than mere followers--and examine dynamics on networks with hetergeneous correlations. (This talk discusses joint work with Davide Cellai, James Gleeson, Sergey Melnik, Peter Mucha, J-P Onnela, Felix Reed-Tsochas, and Jonathan Ward.)

Efficient Computation of Invariant Tori in Volume-Preserving Maps

Series
CDSNS Colloquium
Time
Monday, August 26, 2013 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Adam M. FoxDepartment of Mathematics, Georgia Institute of Technology
Volume preserving maps naturally arise in the study of many natural phenomena including incompressible fluid-flows, magnetic field-line flows, granular mixing, and celestial mechanics. Codimension one invariant tori play a fundamental role in the dynamics of these maps as they form boundaries to transport; orbits that begin on one side cannot cross to the other. In this talk I will present a Fourier-based, quasi-Newton scheme to compute the invariant tori of three-dimensional volume-preserving maps. I will further show how this method can be used to predict the perturbation threshold for their destruction and study the mechanics of their breakup.

Chip-firing via open covers

Series
Algebra Seminar
Time
Monday, August 26, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Spencer BackmanGeorgia Institute of Technology
Chip-firing on graphs is a simple process with suprising connections to various areas of mathematics. In recent years it has been recognized as a combinatorial language for describing linear equivalence of divisors on graphs and tropical curves. There are two distinct chip-firing games: the unconstrained chip-firing game of Baker and Norine and the Abelian sandpile model of Bak, Tang, and Weisenfled, which are related by a duality very close to Riemann-Roch theory. In this talk we introduce generalized chip-firing dynamics via open covers which provide a fine interpolation between these two previously studied models.

Pages