Seminars and Colloquia by Series

Various simplicial complexes associated to matroids

Series
Algebra Seminar
Time
Monday, November 7, 2011 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Farbod ShokriehGeorgia Tech
A matroid is a structure that captures the notion of "independence". For example, given a set of vectors in a vector space, one can define a matroid. Graphs also naturally give rise to matroids. I will talk about various simplicial complexes associated to matroids. These include the "matroid complex", the "broken circuit complex", and the "order complex" of the associated geometric lattice. They carry some of the most important invariants of matroids and graphs. I will also show how the Bergman fan and its refinement (which arise in tropical geometry) relate to the classical theory. If time permits, I will give an outline of a recent breakthrough result of Huh and Katz on log-concavity of characteristic (chromatic) polynomials of matroids. No prior knowledge of the subject will be assumed. Most of the talk should be accessible to advanced undergraduate students.

Grassmannians and Random Polygons

Series
Geometry Topology Seminar
Time
Monday, November 7, 2011 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Clay ShonkwilerUGA
In 1997 Hausmann and Knutson discovered a remarkable correspondence between complex Grassmannians and closed polygons which yields a natural symmetric Riemannian metric on the space of polygons. In this talk I will describe how these symmetries can be exploited to make interesting calculations in the probability theory of the space of polygons, including simple and explicit formulae for the expected values of chord lengths. I will also give a simple and fast algorithm for sampling random polygons--which serve as a statistical model for polymers--directly from this probability distribution.

An iterative filtering method for adaptive signal decomposition based on a PDE model

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 7, 2011 - 14:00 for 30 minutes
Location
Skiles 006
Speaker
Jingfang LiuGT Math
The empirical mode decomposition (EMD) was a method developed by Huang et al as an alternative approach to the traditional Fourier and wavelet techniques for studying signals. It decomposes signals into finite numbers of components which have well behaved intataneous frequency via Hilbert transform. These components are called intrinstic mode function (IMF). Recently, alternative algorithms for EMD have been developed, such as iterative filtering method or sparse time-frequency representation by optimization. In this talk we present our recent progress on iterative filtering method. We develop a new local filter based on a partial differential equation (PDE) model as well as a new approach to compute the instantaneous frequency, which generate similar or better results than the traditional EMD algorithm.

On the Hamilton-Jacobi variational formulation of the Vlasov equation

Series
CDSNS Colloquium
Time
Monday, November 7, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Phil MorrisonUniv. of Texas at Austin
The Vlasov-Poisson and Vlasov-Maxwell equations possess various variational formulations1 or action principles, as they are generally termed by physicists. I will discuss a particular variational principle that is based on a Hamiltonian-Jacobi formulation of Vlasov theory, a formulation that is not widely known. I will show how this formu- lation can be reduced for describing the Vlasov-Poisson system. The resulting system is of Hamilton-Jacobi form, but with nonlinear global coupling to the Poisson equation. A description of phase (function) space geometry will be given and comments about Hamilton-Jacobi pde methods and weak KAM will be made.Supported by the US Department of Energy Contract No. DE-FG03- 96ER-54346.H. Ye and P. J. Morrison Phys. Fluids 4B 771 (1992).D. Pfirsch, Z. Naturforsch. 39a, 1 (1984); D. Pfirsch and P. J. Morrison, Phys. Rev. 32A, 1714 (1985).

Discrete Mathematical Biology Working Seminar

Series
Other Talks
Time
Monday, November 7, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Todd ShaylerGeorgia Tech
Continued discussion of the Allali and Sagot (2005) paper "A New Distance for High Level RNA Secondary Structure Comparison."

Atlanta Lecture Series in Combinatorics and Graph Theory IV

Series
Other Talks
Time
Saturday, November 5, 2011 - 09:30 for 1 hour (actually 50 minutes)
Location
Petit Science Center, Room 124, Georgia State University
Speaker
Featured Speaker Bela BollobasCambridge University and University of Memphis

Please Note: Please contact Guantao Chen, gchen@gsu.edu if you are interested in participating this mini-conference.

Emory University, the Georgia Institute of Technology and Georgia State University, with support from the National Security Agency and the National Science Foundation, are hosting a series of 9 mini-conferences from November 2010 - April 2013. The fourth in the series will be held at Georgia State University on November 5-6, 2011. This mini-conference's featured speaker is Dr. Bela Bollobas, who will give two one-hour lectures. Additionally, there will be five one-hour talks and seven half-hour talks given by other invited speakers. See all titles, abstracts, and schedule.

Decomposition of Sparse Graphs into Forests and a Graph with Bounded Degree

Series
Combinatorics Seminar
Time
Friday, November 4, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Douglas B. WestUniversity of Illinois
Say that a graph with maximum degree at most $d$ is {\it $d$-bounded}.  For$d>k$, we prove a sharp sparseness condition for decomposition into $k$ forestsand a $d$-bounded graph.  The condition holds for every graph with fractionalarboricity at most $k+\FR d{k+d+1}$.  For $k=1$, it also implies that everygraph with maximum average degree less than $2+\FR{2d}{d+2}$ decomposes intoone forest and a $d$-bounded graph, which contains several earlier results onplanar graphs.

Examples of negatively curved manifold (after Ontaneda)

Series
Geometry Topology Working Seminar
Time
Friday, November 4, 2011 - 14:05 for 2 hours
Location
Skiles 006
Speaker
Igor BelegradekGeorgia Tech
This is the first in the series of two talks aimed to discuss a recent work of Ontaneda which gives a poweful method of producing negatively curved manifolds. Ontaneda's work adds a lot of weight to the often quoted Gromov's prediction that in a sense most manifolds (of any dimension) are negatively curved.

Pages