Seminars and Colloquia by Series

Dynamics of swimming and falling bodies in inviscid flows

Series
Research Horizons Seminar
Time
Wednesday, October 26, 2011 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Silas AlbenSchool of Mathematics, Georgia Tech
Vortex methods are an efficient and versatile way to simulate high Reynolds number flows. We have developed vortex sheet methods for a variety of flows past deforming bodies, many of which are biologically inspired. In this talk we will present simulations and asymptotic analysis of selected problems. The first is a study of oscillated and freely-swimming flexible foils. We analyze the damped resonances that determine propulsive performance. The second problem involves multiple passive flapping ``flags" which interact through their vortex wakes. The third problem is a study of flexible falling sheets. Here the flag-flapping instability helps us determine the terminal falling speeds.

The Fractal Nature of the Abelian Sandpile

Series
PDE Seminar
Time
Tuesday, October 25, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Charles SmartMIT
I will discuss a natural elliptic obstacle problem that arises in the study of the Abelian sandpile. The Abelian sandpile is a deterministic growth model from statistical physics which produces beautiful fractal-like images. In recent joint work with Wesley Pegden, we characterize the continuum limit of the sandpile processusing PDE techniques. In follow up work with Lionel Levine and Wesley Pegden, we partially describe the fractal structure of the stable sandpiles via a careful analysis of the limiting obstacle problem.

Optimal decompositions of quasi-line trigraphs

Series
Graph Theory Seminar
Time
Tuesday, October 25, 2011 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Andrew KingSimon Fraser University
Chudnovsky and Seymour's structure theorem for quasi-line graphs has led to a multitude of recent results that exploit two structural operations: compositions of strips and thickenings. In this paper we prove that compositions of linear interval strips have a unique optimal strip decomposition in the absence of a specific degeneracy, and that every claw-free graph has a unique optimal antithickening, where our two definitions of optimal are chosen carefully to respect the structural foundation of the graph. Furthermore, we give algorithms to find the optimal strip decomposition in O(nm) time and find the optimal antithickening in O(m2) time. For the sake of both completeness and ease of proof, we prove stronger results in the more general setting of trigraphs. This gives a comprehensive "black box" for decomposing quasi-line graphs that is not only useful for future work but also improves the complexity of some previous algorithmic results. Joint work with Maria Chudnovsky.

The analityicity transition in Frenkel-Kontorova models and XY models in 1-D

Series
Math Physics Seminar
Time
Tuesday, October 25, 2011 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Rafael De la LlaveSoM Georgia Tech
We consider several models from solid state Physics and consider the problem offinding quasi-periodic solutions. We present a KAM theorem that showsthat given an approximate solution with good condition numbers, onecan find a true solution close by. The method of proof leads tovery efficient algorithms. Also it provides a criterion for breakdown.We will present the proof, the algorithms and some conjectures obtainedby computing in some cases. Much of the work was done with R. Calleja and X. Su.

From Sparsity to Rank, and Beyond: algebra, geometry, and convexity

Series
School of Mathematics Colloquium
Time
Monday, October 24, 2011 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Pablo ParriloMIT
Optimization problems involving sparse vectors or low-rank matrices are of great importance in applied mathematics and engineering. They provide a rich and fruitful interaction between algebraic-geometric concepts and convex optimization, with strong synergies with popular techniques like L1 and nuclear norm minimization. In this lecture we will provide a gentle introduction to this exciting research area, highlighting key algebraic-geometric ideas as well as a survey of recent developments, including extensions to very general families of parsimonious models such as sums of a few permutations matrices, low-rank tensors, orthogonal matrices, and atomic measures, as well as the corresponding structure-inducing norms.Based on joint work with Venkat Chandrasekaran, Maryam Fazel, Ben Recht, Sujay Sanghavi, and Alan Willsky.

Surface diagrams of smooth 4-manifolds

Series
Geometry Topology Seminar
Time
Monday, October 24, 2011 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jonathan WilliamsUGA
I will describe a new way to depict any smooth, closed oriented 4-manifold using a surface decorated with circles, along with a set of moves that relate any pair of such depictions.

A fast algorithm for finding the shortest path by solving initial value ODE's

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 24, 2011 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jun LuGT Math
We propose a new fast algorithm for finding the global shortest path connecting two points while avoiding obstacles in a region by solving an initial value problem of ordinary differential equations (ODE's). The idea is based on the factthat the global shortest path possesses a simple geometric structure. This enables us to restrict the search in a set of feasible paths that share the same structure. The resulting search space is reduced to a finite dimensional set. We use a gradient descent strategy based on the intermittent diffusion (ID) in conjunction with the level set framework to obtain the global shortest path by solving a randomly perturbed ODE's with initial conditions.Compared to the existing methods, such as the combinatorial methods or partial differential equation(PDE) methods, our algorithm is faster and easier to implement. We can also handle cases in which obstacles shape are arbitrary and/or the dimension of the base space is three or higher.

Discrete Mathematical Biology Working Seminar

Series
Other Talks
Time
Monday, October 24, 2011 - 11:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 114
Speaker
Todd ShaylerGeorgia Tech
A discussion of the Allali and Sagot (2005) paper "A New Distance for High Level RNA Secondary Structure Comparison."

Triangulations and Resultants

Series
Combinatorics Seminar
Time
Friday, October 21, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josephine YuSchool of Math, Ga Tech
The secondary polytope of a point configuration A is a polytope whose faces are in bijection with regular subdivions of A, e.g. the secondary polytope of the vertices of polygon is an associahedron. The resultant of a tuple of point configurations A_1, A_2, ..., A_k in Z^n is the set of coefficients for which the polynomials with supports A_1, A_2, ..., A_k have a common root with no zero coordinates over complex numbers, e.g. when each A_1 is a standard simplex and k = n+1, the resultant is defined by a determinant. The Newton polytope of a polynomial is the convex hull of the exponents, e.g. the Newton polytope of the determinant is the perfect matching polytope. In this talk, I will explain the close connection between secondary polytopes and Newton polytopes of resultants, using tropical geometry, based on joint work with Anders Jensen.

Pages