Seminars and Colloquia by Series

Non-linear stochastic perturbations of dynamical systems.

Series
Research Horizons Seminar
Time
Wednesday, February 16, 2011 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sergio Almada MonterGeorgia Tech
In this talk the general setting for stochastic perturbation for dynamical systems is given. Recent research direction are given for the case in which the perturbation is non-linear. This is a generalization of the well known theory of Freidling Wentzell and Large deviations, which will be summarized during the talk.As always pizza and drinks will be served. Hosts: Amey Kaloti and Ricardo Restrepo.

Tropical elliptic curves

Series
Algebra Seminar
Time
Monday, February 14, 2011 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matt BakerGeorgia Tech
I will discuss some recent results, obtained jointly with Sam Payne and Joe Rabinoff, on tropicalizations of elliptic curves.

Lecture series on the disjoint paths algorithm

Series
Graph Theory Seminar
Time
Monday, February 14, 2011 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 168
Speaker
Paul WollanSchool of Mathematics, Georgia Tech and University of Rome
The k-disjoint paths problem takes as input a graph G and k pairs of vertices (s_1, t_1),..., (s_k, t_k) and determines if there exist internally disjoint paths P_1,..., P_k such that the endpoints of P_i are s_i and t_i for all i=1,2,...,k. While the problem is NP-complete when k is allowed to be part of the input, Robertson and Seymour showed that there exists a polynomial time algorithm for fixed values of k. The existence of such an algorithm is the major algorithmic result of the Graph Minors series. The original proof of Robertson and Seymour relies on the whole theory of graph minors, and consequently is both quite technical and involved. Recent results have dramatically simplified the proof to the point where it is now feasible to present the proof in its entirety. This seminar series will do just that, with the level of detail aimed at a graduate student level.

Legendrian and transverse knots in cabled knot types

Series
Geometry Topology Seminar
Time
Monday, February 14, 2011 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bulent TosunGa Tech
In this talk we will exhibit many new phenomena in the structure of Legendrian and transverse knots by giving a complete classification of all cables of the positive torus knots. We will also provide two structural theorems to ensure when cable of a Legendrian simple knot type is also Legendrian simple. Part of the results are joint work with John Etnyre and Douglas LaFountain

Avoiding Many Monochromatic Constellations

Series
Combinatorics Seminar
Time
Friday, February 11, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kevin CostelloSchool of Mathematics, Georgia Tech
We consider the question of coloring the first n integers with two colors in such a way as to avoid copies of a given arithmetic configuration (such as 3 term arithmetic progressions, or solutions to x+y=z+w). We know from results of Van der Waerden and others that avoiding such configurations completely is a hopeless task if n is sufficiently large, so instead we look at the question of finding colorings with comparatively few monochromatic copies of the configuration. At the very least, can we do significantly better than just closing our eyes and coloring randomly? I will discuss some partial answers, experimental results, and conjectured answers to these questions for certain configurations based on joint work with Steven Butler and Ron Graham.

Large deviations for Minkowski sums of heavy-tailed random compact sets

Series
Mathematical Finance/Financial Engineering Seminar
Time
Friday, February 11, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Gennady Samorodnitsky School of Operations Research and Information Engineering, Cornell University

Please Note: Hosted by Christian Houdre and Liang Peng

We prove large deviation results for Minkowski sums S_n of iid random compact sets, both convex and non-convex, where we assume that the summands have a regularly varying distribution and either finite or infinite expectation. The results confirm the heavy-tailed large deviation heuristics: "large'' values of the sum are essentially due to the "largest'' summand.

A Riemannian geometry look at contact geometry

Series
Geometry Topology Working Seminar
Time
Friday, February 11, 2011 - 14:00 for 2 hours
Location
Skiles 269
Speaker
John EtnyreSchool of Mathematics, Georgia Tech
This is part two of a lecture series investigating questions in contact geometry from the perspective of Riemannian geometry. Interesting questions in Riemannian geometry arising from contact geometry have a long and rich history, but there have been few applications of Riemannian geometry to contact topology. In these talks I will discuss basic connections between Riemannian and contact geometry and some applications of these connections. I will also discuss the "contact sphere theorem" that Rafal Komendarczyk, Patrick Massot and I recently proved as well as other results.

The minimum number of edges in color-critical graphs

Series
Graph Theory Seminar
Time
Thursday, February 10, 2011 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chun-Hung LiuMath, GT
A graph is k-critical if it is not (k-1)-colorable but every proper subgraph is. In 1963, Gallai conjectured that every k-critical graph G of order n has at least (k-1)n/2 + (k-3)(n-k)/(2k-2) edges. The currently best known results were given by Krivelevich for k=4 and 5, and by Kostochka and Stiebitz for k>5. When k=4, Krivelevich's bound is 11n/7, and the bound in Gallai's conjecture is 5n/3 -2/3. Recently, Farzad and Molloy proved Gallai's conjecture for k=4 under the extra condition that the subgraph induced by veritces of degree three is connected. We will review the proof given by Krivelevich, and the proof given by Farzad and Molloy in the seminar.

Analysis of partial differential equations in non-smooth media

Series
Job Candidate Talk
Time
Thursday, February 10, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Svitlana MayborodaPurdue University
Despite its long history, the theory of ellipticpartial differential equations in non-smooth media is abundant with openproblems. We will discuss the main achievements in the theory, recentdevelopments, surprising paradoxes related to the behavior of solutions nearthe boundary, and some fundamental questions which still remain open.

Pages