Seminars and Colloquia by Series

Spaces of nonnegatively curved metrics

Series
Geometry Topology Working Seminar
Time
Friday, April 1, 2011 - 14:05 for 2 hours
Location
Skiles 269
Speaker
Igor BelegradekGeorgia Tech
The talk will be about my ongoing work on spaces of complete non-negatively curved metrics on low-dimensional manifolds, such as Euclidean plane, 2-sphere, or their product.

On the Steinberg's Conjecture: 3-coloring of planar graphs

Series
SIAM Student Seminar
Time
Friday, April 1, 2011 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 246
Speaker
Peter WhalenSchool of Mathematics, Georgia Tech
Steinberg's Conjecture states that any planar graph without cycles of length four or five is three colorable. Borodin, Glebov, Montassier, and Raspaud showed that planar graphs without cycles of length four, five, or seven are three colorable and Borodin and Glebov showed that planar graphs without five cycles or triangles at distance at most two apart are three colorable. We prove a statement similar to both of these results: that any planar graph with no cycles of length four through six or cycles of length seven with incident triangles distance exactly two apart are three colorable. Special thanks to Robin Thomas for substantial contributions in the development of the proof.

Deletion without Rebalancing in Balanced Search Trees

Series
Joint ACO and ARC Colloquium
Time
Friday, April 1, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
TSRB Banquet Hall, 85 5th St.
Speaker
Robert TarjanPrinceton University
Deletion in a balanced search tree is a problematic operation: rebalancing on deletion has more cases than rebalancing on insertion, and it is easy to get wrong. We describe a way to maintain search trees so that rebalancing occurs only on insertion, not on deletion, but the tree depth remains logarithmic in the number of insertions, independent of the number of deletions. Our results provide theoretical justification for common practice in B-tree implementations, as well as providing a new kind of balanced binary tree that is more efficient in several ways than those previously known. This work was done jointly with Sid Sen. This is a day-long event of exciting talks by meta-learning meta-theorist Nina Balcan, security superman Wenke Lee and prolific mathematician Prasad Tetali, posters by the 10 ARC fellowship winners for the current academic year. All details are posted at http://www.arc.gatech.edu/arc4.php. The event begins at 9:00AM.

Generic properties of scalar parabolic equations

Series
CDSNS Colloquium
Time
Friday, April 1, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Genevieve RaugelUniversite Paris-Sud
In this talk, we generalize the classical Kupka-Smale theorem for ordinary differential equations on R^n to the case of scalar parabolic equations. More precisely, we show that, generically with respect to the non-linearity, the semi-flow of a reaction-diffusion equation defined on a bounded domain in R^n or on the torus T^n has the "Kupka-Smale" property, that is, all the critical elements (i.e. the equilibrium points and periodic orbits) are hyperbolic and the stable and unstable manifolds of the critical elements intersect transversally. In the particular case of T1, the semi-flow is generically Morse-Smale, that is, it has the Kupka-Smale property and, moreover, the non-wandering set is finite and is only composed of critical elements. This is an important property, since Morse-Smale semi-flows are structurally stable. (Joint work with P. Brunovsky and R. Joly).

From Inverse Picard to Inverse-Mordell Weil

Series
Algebra Seminar
Time
Thursday, March 31, 2011 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Pete ClarkUniversity of Georgia
Which commutative groups can occur as the ideal class group (or "Picard group") of some Dedekind domain? A number theorist naturally thinks of the case of integer rings of number fields, in which the class group must be finite and the question of which finite groups occur is one of the deepest in algebraic number theory. An algebraic geometer naturally thinks of affine algebraic curves, and in particular, that the Picard group of the standard affine ring of an elliptic curve E over C is isomorphic to the group of rational points E(C), an uncountably infinite (Lie) group. An arithmetic geometer will be more interested in Mordell-Weil groups, i.e., E(k) when k is a number field -- again, this is one of the most notorious problems in the field. But she will at least be open to the consideration of E(k) as k varies over all fields. In 1966, L.E. Claborn (a commutative algebraist) solved the "Inverse Picard Problem": up to isomorphism, every commutative group is the Picard group of some Dedekind domain. In the 1970's, Michael Rosen (an arithmetic geometer) used elliptic curves to show that any countable commutative group can serve as the class group of a Dedekind domain. In 2008 I learned about Rosen's work and showed the following theorem: for every commutative group G there is a field k, an elliptic curve E/k and a Dedekind domain R which is an overring of the standard affine ring k[E] of E -- i.e., a domain in between k[E] and its fraction field k(E) -- with ideal class group isomorphic to G. But being an arithmetic geometer, I cannot help but ask about what happens if one is not allowed to pass to an overring: which commutative groups are of the form E(k) for some field k and some elliptic curve E/k? ("Inverse Mordell-Weil Problem") In this talk I will give my solution to the "Inverse Picard Problem" using elliptic curves and give a conjectural answer to the "Inverse Mordell-Weil Problem". Even more than that, I can (and will, time permitting) sketch a proof of my conjecture, but the proof will necessarily gloss over a plausible technicality about Mordell-Weil groups of "arithmetically generic" elliptic curves -- i.e., I do not in fact know how to do it. But the technicality will, I think, be of interest to some of the audience members, and of course I am (not so) secretly hoping that someone there will be able to help me overcome it.

Identification of semimartingales within infinitely divisible processes

Series
Stochastics Seminar
Time
Thursday, March 31, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jan RosinskiUniversity of Tennessee, Knoxville
Semimartingales constitute the larges class of "good integrators" for which Ito integral could reasonably be defined and the stochastic analysis machinery applied. In this talk we identify semimartingales within certain infinitely divisible processes. Examples include stationary (but not independent) increment processes, such as fractional and moving average processes, as well as their mixtures. Such processes are non-Markovian, often possess long range memory, and are of interest as stochastic integrators. The talk is based on a joint work with Andreas Basse-O'Connor.

The Berkovich Ramification Locus for Rational Functions

Series
Algebra Seminar
Time
Thursday, March 31, 2011 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xander FaberUniversity of Georgia
Given a nonconstant holomorphic map f: X \to Y between compact Riemann surfaces, one of the first objects we learn to construct is its ramification divisor R_f, which describes the locus at which f fails to be locally injective. The divisor R_f is a finite formal linear combination of points of X that is combinatorially constrained by the Hurwitz formula. Now let k be an algebraically closed field that is complete with respect to a nontrivial non-Archimedean absolute value. For example, k = C_p. Here the role of a Riemann surface is played by a projective Berkovich analytic curve. As these curves have many points that are not algebraic over k, some new (non-algebraic) ramification behavior appears for maps between them. For example, the ramification locus is no longer a divisor, but rather a closed analytic subspace. The goal of this talk is to introduce the Berkovich projective line and describe some of the topology and geometry of the ramification locus for self-maps f: P^1 \to P^1.

A simple proof for the two disjoint odd cycles theorem

Series
Graph Theory Seminar
Time
Thursday, March 31, 2011 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kenta OzekiNational Institute of Informatics, Japan
A characterization of graphs without an odd cycle is easy, of course,it is exactly bipartite. However, graphs without two vertex disjoint oddcycles are not so simple. Lovasz is the first to give a proof of the twodisjoint odd cycles theorem which characterizes internally 4-connectedgraphs without two vertex disjoint odd cycles. Note that a graph $G$ iscalled internally 4-connected if $G$ is 3-connected, and all 3-cutseparates only one vertex from the other.However, his proof heavily depends on the seminal result by Seymour fordecomposing regular matroids. In this talk, we give a new proof to thetheorem which only depends on the two paths theorem, which characterizesgraphs without two disjoint paths with specified ends (i.e., 2-linkedgraphs). In addition, our proof is simpler and shorter.This is a joint work with K. Kawarabayashi (National Institute ofInformatics).

Spectral properties of a limit-periodic Schrödinger operator

Series
Math Physics Seminar
Time
Wednesday, March 30, 2011 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yulia KarpeshinaDept. of Mathematics, University of Alabama, Birmingham
We study a two dimensional Schrödinger operator for a limit-periodic potential. We prove that the spectrum contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves in the high energy region. Second, the isoenergetic curves in the space of momenta corresponding to these eigenfunctions have a form of slightly distorted circles with holes (Cantor type structure). Third, the spectrum corresponding to these eigenfunctions (the semiaxis) is absolutely continuous.

Pages