Seminars and Colloquia by Series

Using Mass formulas to Enumerate Definite Quadratic Forms of Bounded Class Number

Series
Algebra Seminar
Time
Tuesday, January 24, 2012 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jonathan HankeUniversity of Georgia
This talk will describe some recent results using exact massformulas to determine all definite quadratic forms of small class number inn>=3 variables, particularly those of class number one.The mass of a quadratic form connects the class number (i.e. number ofclasses in the genus) of a quadratic form with the volume of its adelicstabilizer, and is explicitly computable in terms of special values of zetafunctions. Comparing this with known results about the sizes ofautomorphism groups, one can make precise statements about the growth ofthe class number, and in principle determine those quadratic forms of smallclass number.We will describe some known results about masses and class numbers (overnumber fields), then present some new computational work over the rationalnumbers, and perhaps over some totally real number fields.

The cohomology groups of the pure string motion group are uniformly representation stable

Series
Geometry Topology Seminar
Time
Monday, January 23, 2012 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jenny WilsonUniversity of Chicago
In the past two years, Church, Farb and others have developed the concept of 'representation stability', an analogue of homological stability for a sequence of groups or spaces admitting group actions. In this talk, I will give an overview of this new theory, using the pure string motion group P\Sigma_n as a motivating example. The pure string motion group, which is closely related to the pure braid group, is not cohomologically stable in the classical sense -- for each k>0, the dimension of the H^k(P\Sigma_n, \Q) tends to infinity as n grows. The groups H^k(P\Sigma_n, \Q) are, however, representation stable with respect to a natural action of the hyperoctahedral group W_n, that is, in some precise sense, the description of the decomposition of the cohomology group into irreducible W_n-representations stabilizes for n>>k. I will outline a proof of this result, verifying a conjecture by Church and Farb.

Linear and nonlinear vibration-based energy harvesting

Series
Applied and Computational Mathematics Seminar
Time
Monday, January 23, 2012 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alper ErturkGeorgia Tech, School of Mechanical Engineering
The transformation of vibrations into low-power electricity has received growing attention over the last decade. The goal in this research field is to enable self-powered electronic components by harvesting the vibrational energy available in their environment. This talk will be focused on linear and nonlinear vibration-based energy harvesting using piezoelectric materials, including the modeling and experimental validation efforts. Electromechanical modeling discussions will involve both distributed-parameter and lumped-parameter approaches for quantitative prediction and qualitative representation. An important issue in energy harvesters employing linear resonance is that the best performance of the device is limited to a narrow bandwidth around the fundamental resonance frequency. If the excitation frequency slightly deviates from the resonance condition, the power output is drastically reduced. Energy harvesters based on nonlinear configurations (e.g., monostable and bistable Duffing oscillators with electromechanical coupling) offer rich nonlinear dynamic phenomena and outperform resonant energy harvesters under harmonic excitation over a range of frequencies. High-energy limit-cycle oscillations and chaotic vibrations in strongly nonlinear bistable beam and plate configurations are of particular interest. Inherent material nonlinearities and dissipative nonlinearities will also be discussed. Broadband random excitation of energy harvesters will be summarized with an emphasis on stochastic resonance in bistable configurations. Recent efforts on aeroelastic energy harvesting as well as underwater thrust and electricity generation using fiber-based flexible piezoelectric composites will be addressed briefly.

Parallel heat transport in reverse shear magnetic fields

Series
Math Physics Seminar
Time
Monday, January 23, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel BlazevskiUniversity of Texas
I will discuss local and nonlocal anisotropic heat transport along magnetic field lines in a tokamak, a device used to confine plasma undergoing fusion. I will give computational results that relate certain dynamical features of the magnetic field, e.g. resonance islands, chaotic regions, transport barriers, etc. to the asymptotic temperature profiles for heat transport along the magnetic field lines.

A numerical algorithm for the computation of periodic orbits of the Kuramoto-Sivashinsky equation.

Series
CDSNS Colloquium
Time
Monday, January 23, 2012 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jordi Lluis FiguerasUppsala University
In this talk we will present a numerical algorithm for the computation of (hyperbolic) periodic orbits of the 1-D K-S equation u_t+v*u_xxxx+u_xx+u*u_x = 0, with v>0. This numerical algorithm consists on apply a suitable Newton scheme for a given approximate solution. In order to do this, we need to rewrite the invariance equation that must satisfy a periodic orbit in a form that its linearization around an approximate solution is a bounded operator. We will show also how this methodology can be used to compute rigorous estimates of the errors of the solutions computed.

Discrete Mathematical Biology Working Seminar

Series
Other Talks
Time
Monday, January 23, 2012 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Shel SwensonGeorgia Tech
A discussion of the paper "Beyond energy minimization: approaches to the kinetic folding of RNA'' by Flamm and Hofacker (2008).

Recent advances on the structure of metric measure spaces with Ricci curvature bounded from below

Series
Job Candidate Talk
Time
Thursday, January 19, 2012 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Nicola GigliUniversity of Nice
I'll show how on metric measure spaces with Ricci curvature bounded from below in the sense of Lott-Sturm-Villani there is a well defined notion of Heat flow, and how the study of the properties of this flow leads to interesting geometric and analytic properties of the spaces themselves. A particular attention will be given to the class of spaces where the Heat flow is linear. (From a collaboration with Ambrosio and Savare')

Asymptotic behavior for solutions of the random Schrödinger with long-range correlations.

Series
Stochastics Seminar
Time
Thursday, January 19, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
skyles 006
Speaker
Christophe GomezDepartment of Mathematics, Stanford University
In this talk we will describe the different behaviors of solutions of the random Schrödinger with long-range correlations. While in the case of arandom potential with rapidly decaying correlations nontrivial phenomenaappear on the same scale, different phenomena appear on different scalesfor a random potential with slowly decaying correlations nontrivial .

On the behavior at infinity of solutions to difference equations in Schroedinger form

Series
Analysis Seminar
Time
Wednesday, January 18, 2012 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lillian WongGeorgia Tech
We offer several perspectives on the behavior at infinity of solutions of discrete Schroedinger equations. First we study pairs of discrete Schroedinger equations whose potential functions differ by a quantity that can be considered small in a suitable sense as the index n \rightarrow \infty. With simple assumptions on the growth rate of the solutions of the original system, we show that the perturbed system has a fundamental set of solutions with the same behavior at infinity, employing a variation-of-constants scheme to produce a convergent iteration for the solutions of the second equation in terms of those of the original one. We use the relations between the solution sets to derive exponential dichotomy of solutions and elucidate the structure of transfer matrices. Later, we present a sharp discrete analogue of the Liouville-Green (WKB) transformation, making it possible to derive exponential behavior at infinity of a single difference equation, by explicitly constructing a comparison equation to which our perturbation results apply. In addition, we point out an exact relationship connecting the diagonal part of the Green matrix to the asymptotic behavior of solutions. With both of these tools it is possible to identify an Agmon metric, in terms of which, in some situations, any decreasing solution must decrease exponentially.This talk is based on joint work with Evans Harrell.

Pages