Seminars and Colloquia by Series

Nash Equilibria for a simple model of market with commodity money.

Series
Math Physics Seminar
Time
Wednesday, February 16, 2011 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Federico BonettoGeorgia Tech
I'll present a simple model of market where the use of (commodity) money naturally arisefrom the agents interaction. I'll introduce the relevant notion of (Nash) equilibrium and discuss itsexistence and properties.

Regularity of Solutions to Extremal Problems in Bergman Spaces

Series
Analysis Seminar
Time
Wednesday, February 16, 2011 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tim FergusonUniversity of Michigan
I will discuss linear extremal problems in the Bergman spaces $A^p$ ofthe unit disc and a theorem of Ryabykh about regularity of thesolutions to these problems. I will also discuss extensions I havefound of Ryabykh's theorem in the case where $p$ is an even integer.The proofs of these extensions involve Littlewood-Paley theory and abasic characterization of extremal functions.

Non-linear stochastic perturbations of dynamical systems.

Series
Research Horizons Seminar
Time
Wednesday, February 16, 2011 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sergio Almada MonterGeorgia Tech
In this talk the general setting for stochastic perturbation for dynamical systems is given. Recent research direction are given for the case in which the perturbation is non-linear. This is a generalization of the well known theory of Freidling Wentzell and Large deviations, which will be summarized during the talk.As always pizza and drinks will be served. Hosts: Amey Kaloti and Ricardo Restrepo.

Tropical elliptic curves

Series
Algebra Seminar
Time
Monday, February 14, 2011 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matt BakerGeorgia Tech
I will discuss some recent results, obtained jointly with Sam Payne and Joe Rabinoff, on tropicalizations of elliptic curves.

Lecture series on the disjoint paths algorithm

Series
Graph Theory Seminar
Time
Monday, February 14, 2011 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 168
Speaker
Paul WollanSchool of Mathematics, Georgia Tech and University of Rome
The k-disjoint paths problem takes as input a graph G and k pairs of vertices (s_1, t_1),..., (s_k, t_k) and determines if there exist internally disjoint paths P_1,..., P_k such that the endpoints of P_i are s_i and t_i for all i=1,2,...,k. While the problem is NP-complete when k is allowed to be part of the input, Robertson and Seymour showed that there exists a polynomial time algorithm for fixed values of k. The existence of such an algorithm is the major algorithmic result of the Graph Minors series. The original proof of Robertson and Seymour relies on the whole theory of graph minors, and consequently is both quite technical and involved. Recent results have dramatically simplified the proof to the point where it is now feasible to present the proof in its entirety. This seminar series will do just that, with the level of detail aimed at a graduate student level.

Legendrian and transverse knots in cabled knot types

Series
Geometry Topology Seminar
Time
Monday, February 14, 2011 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bulent TosunGa Tech
In this talk we will exhibit many new phenomena in the structure of Legendrian and transverse knots by giving a complete classification of all cables of the positive torus knots. We will also provide two structural theorems to ensure when cable of a Legendrian simple knot type is also Legendrian simple. Part of the results are joint work with John Etnyre and Douglas LaFountain

Avoiding Many Monochromatic Constellations

Series
Combinatorics Seminar
Time
Friday, February 11, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kevin CostelloSchool of Mathematics, Georgia Tech
We consider the question of coloring the first n integers with two colors in such a way as to avoid copies of a given arithmetic configuration (such as 3 term arithmetic progressions, or solutions to x+y=z+w). We know from results of Van der Waerden and others that avoiding such configurations completely is a hopeless task if n is sufficiently large, so instead we look at the question of finding colorings with comparatively few monochromatic copies of the configuration. At the very least, can we do significantly better than just closing our eyes and coloring randomly? I will discuss some partial answers, experimental results, and conjectured answers to these questions for certain configurations based on joint work with Steven Butler and Ron Graham.

Large deviations for Minkowski sums of heavy-tailed random compact sets

Series
Mathematical Finance/Financial Engineering Seminar
Time
Friday, February 11, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Gennady Samorodnitsky School of Operations Research and Information Engineering, Cornell University

Please Note: Hosted by Christian Houdre and Liang Peng

We prove large deviation results for Minkowski sums S_n of iid random compact sets, both convex and non-convex, where we assume that the summands have a regularly varying distribution and either finite or infinite expectation. The results confirm the heavy-tailed large deviation heuristics: "large'' values of the sum are essentially due to the "largest'' summand.

A Riemannian geometry look at contact geometry

Series
Geometry Topology Working Seminar
Time
Friday, February 11, 2011 - 14:00 for 2 hours
Location
Skiles 269
Speaker
John EtnyreSchool of Mathematics, Georgia Tech
This is part two of a lecture series investigating questions in contact geometry from the perspective of Riemannian geometry. Interesting questions in Riemannian geometry arising from contact geometry have a long and rich history, but there have been few applications of Riemannian geometry to contact topology. In these talks I will discuss basic connections between Riemannian and contact geometry and some applications of these connections. I will also discuss the "contact sphere theorem" that Rafal Komendarczyk, Patrick Massot and I recently proved as well as other results.

Pages