Seminars and Colloquia by Series

Small solutions of nonlinear Schrodinger equations near first excited states

Series
PDE Seminar
Time
Tuesday, August 31, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Professor Tai-Peng TsaiDepartment of Mathematics, University of British Columbia
Consider a nonlinear Schrodinger equation in $R^3$ whose linear part has three or more eigenvalues satisfying some resonance conditions. Solutions which are initially small in $H^1 \cap L^1(R^3)$ and inside a neighborhood of the first excited state family are shown to converge to either a first excited state or a ground state at time infinity. An essential part of our analysis is on the linear and nonlinear estimates near nonlinear excited states, around which the linearized operators have eigenvalues with nonzero real parts and their corresponding eigenfunctions are not uniformly localized in space. This is a joint work with Kenji Nakanishi and Tuoc Van Phan.The preprint of the talk is available at http://arxiv.org/abs/1008.3581

Spherical images of hypersurfaces

Series
Geometry Topology Seminar
Time
Monday, August 30, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Mohammad GhomiGa Tech
We discuss necessary and sufficient conditions of a subset X of the sphere S^n to be the image of the unit normal vector field (or Gauss map) of a closed orientable hypersurface immersed in Euclidean space R^{n+1}.

Knots in overtwisted contact structures

Series
Geometry Topology Seminar
Time
Monday, August 23, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
John EtnyreGa Tech
The study of Legendrian and transversal knots has been an essential part of contact topology for quite some time now, but until recently their study in overtwisted contact structures has been virtually ignored. In the past few years that has changed. I will review what is know about such knots and discuss recent work on the "geography" and "botany" problem.

Computing transition paths for rare events

Series
Applied and Computational Mathematics Seminar
Time
Monday, August 23, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 002
Speaker
Maria CameronU Maryland

Please Note: I will propose two numerical approaches for minimizing the MFF. Approach I is good for high-dimensional systems and fixed endpoints. It is based on temperature relaxation strategy and Broyden's method. Approach II is good for low-dimensional systems and only one fixed endpoint. It is based on Sethian's Fast Marching Method.I will show the application of Approaches I and II to the problems of rearrangement of Lennard-Jones cluster of 38 atoms and of CO escape from the Myoglobin protein respectively.

At low temperatures, a system evolving according to the overdamped Langevin equation spends most of the time near the potential minima and performs rare transitions between them. A number of methods have been developed to study the most likely transition paths. I will focus on one of them: the MaxFlux Functional (MFF), introduced by Berkowitz in 1983.I will reintepret the MFF from the point of view of the Transition Path Theory (W. E & E. V.-E.) and show that the MaxFlux approximation is equivalent to the Eikonal Approximation of the Backward Kolmogorov Equation for the committor function.

Theory/ACO Seminar - Matching in Lopsided Bipartite Graphs and a New Matching Polytope

Series
Other Talks
Time
Friday, August 20, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Klaus 1447
Speaker
Kamal JainMicrosoft Research, Redmond, WA

Please Note: This talk should be non-technical except the last few slides. The talk is based on a work done in collaboration with Denis Charles, Max Chickering, Nikhil Devanur, and Manan Sanghi, all from Microsoft.

Lopsided bipartite graphs naturally appear in advertising setting. One side is all the eyeballs and the other side is all the advertisers. An edge is when an advertiser wants to reach an eyeball, aka, ad targeting. Such a bipartite graph is lopsided because there are only a small number of advertisers but a large number of eyeballs. We give algorithms which have running time proportional to the size of the smaller side, i.e., the number of advertisers. One of the main ideas behind our algorithm and as well as the analysis is a property, which we call, monotonic quality bounds. Our algorithm is flexible as it could easily be adapted for different kinds of objective functions. Towards the end of the talk we will describe a new matching polytope. We show that our matching polytope is not only a new linear program describing the classical matching polytope, but is a new polytope together with a new linear program. This part of the talk is still theoretical as we only know how to solve the new linear program via an ellipsoid algorithm. One feature of the polytope, besides being intriguing, is that it has some notion of fairness built in. This is important for advertising since if an advertiser wants to reach 10 million users of type A or type B, advertiser won't necessarily be happy if we show the ad to 10 million users of type A only (though it fulfills the advertising contract in a technical sense).

Modeling and simulation of two phase flow on rough surface

Series
Applied and Computational Mathematics Seminar
Time
Friday, August 20, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 154
Speaker
Xiao-Ping Wang Hong Kong University of Science and Technology
In this talk, I will  describe a newly developed phase field model for two phase fluid flow based on Cahn Hilliard  Navier Stokes equation with generalized Navier boundary condition.  Homogenization method is used to derive  the Wenzel's and Cassie's equations for two phase flow on rough surfaces. Efficient numerical method for the model will also be discussed. We then present some numerical results on two phase flow on rough and patterned surfaces.

Color-Critical Graphs on Surfaces

Series
Dissertation Defense
Time
Thursday, August 19, 2010 - 10:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 114
Speaker
Carl YergerSchool of Mathematics, Georgia Tech
A graph is (t+1)-critical if it is not t-colorable, but every proper subgraph is. In this thesis, we study the structure of critical graphs on higher surfaces. One major result in this area is Carsten Thomassen's proof that there are finitely many 6-critical graphs on a fixed surface. This proof involves a structural theorem about a precolored cycle C of length q. In general terms, he proves that a coloring \phi of C can be extended inside the cycle, or there exists a subgraph H with at most 5^{q^3} vertices such that \phi cannot be extended to a 5-coloring of H. In Chapter 2, we provide an alternative proof that reduces the number of vertices in H to be cubic in q. In Chapter 3, we find the nine 6-critical graphs among all graphs embeddable on the Klein bottle. Finally, in Chapter 4, we prove a result concerning critical graphs related to an analogue of Steinberg's conjecture for higher surfaces. We show that if G is a 4-critical graph embedded on surface \Sigma, with Euler genus g and has no cycles of length four through ten, then |V(G)| \leq 2442g + 37.

Isotopies of links carried by Matsuda branched surfaces

Series
Geometry Topology Seminar
Time
Monday, August 16, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Bill MenascoUniversity of Buffalo
We introduce two related sets of topological objects in the 3-sphere, namely a set of two-component exchangable links termed "iterated doubling pairs", and a see of associated branched surfaces called "Matsuda branched surfaces". Together these two sets possess a rich internal structure, and allow us to present two theorems that provide a new characterization of topological isotopy of braids, as well as a new characterization of transversal isotopy of braids in the 3-sphere endowed with the standard contact structure. This is joint work with Doug Lafountain, and builds upon previous seminal work of Hiroshi Matsuda.

Phylogenetic Supertree Methods: tools for reconstructing the Tree of Life

Series
Mathematical Biology Seminar
Time
Monday, August 16, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 271
Speaker
Shel SwensonUT Austin
Estimating the Tree of Life, an evolutionary tree describing how all life evolved from a common ancestor, is one of the major scientific objectives facing modern biologists. This estimation problem is extremely computationally intensive, given that the most accurate methods (e.g., maximum likelihood heuristics) are based upon attempts to solve NP-hard optimization problems. Most computational biologists assume that the only feasible strategy will involve a divide-and-conquer approach where the large taxon set is divided into subsets, trees are estimated on these subsets, and a supertree method is applied to assemble a tree on the entire set of taxa from the smaller "source" trees. I will present supertree methods in a mathematical context, focusing on some theoretical properties of MRP (Matrix Representation with Parsimony), the most popular supertree method, and SuperFine, a new supertree method that outperforms MRP.

Pages