The Convex Geometry of Inverse Problems
- Series
- Stochastics Seminar
- Time
- Thursday, February 24, 2011 - 15:05 for 1 hour (actually 50 minutes)
- Location
- Skyles 005
- Speaker
- Ben Recht – Computer Sciences Department, University of Wisconsin
Deducing the state or structure of a system from partial, noisy
measurements is a fundamental task throughout the sciences and
engineering. The resulting inverse problems are often ill-posed because
there are fewer measurements available than the ambient dimension of the
model to be estimated. In practice, however, many interesting signals
or models contain few degrees of freedom relative to their ambient
dimension: a small number of genes may constitute the signature of a
disease, very few parameters may specify the correlation structure of a
time series, or a sparse collection of geometric constraints may
determine a molecular configuration. Discovering, leveraging, or
recognizing such low-dimensional structure plays an important role in
making inverse problems well-posed.
In this talk, I will propose a unified approach to transform notions of
simplicity and latent low-dimensionality into convex penalty functions.
This approach builds on the success of generalizing compressed sensing
to matrix completion, and greatly extends the catalog of objects and
structures that can be recovered from partial information. I will focus
on a suite of data analysis algorithms designed to decompose general
signals into sums of atoms from a simple---but not necessarily
discrete---set. These algorithms are derived in a convex optimization
framework that encompasses previous methods based on l1-norm
minimization and nuclear norm minimization for recovering sparse vectors
and low-rank matrices. I will provide sharp estimates of the number of
generic measurements required for exact and robust recovery of a variety
of structured models. These estimates are based on computing certain
Gaussian statistics related to the latent model geometry. I will detail
several example applications and describe how to scale the corresponding
inference algorithms to very large data sets.
(Joint work with Venkat Chandrasekaran, Pablo Parrilo, and Alan Willsky)