Seminars and Colloquia by Series

CLT for Excursion Sets Volumes of Random Fields

Series
Stochastics Seminar
Time
Thursday, April 8, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Alexander BulinskiLomonosov Moscow State University
We consider various dependence concepts for random fields. Special attention is paid to Gaussian and shot-noise fields. The multivariate central limit theorems (CLT) are proved for the volumes of excursion sets of stationary quasi-associated random fields on $\mathbb{R}^d$. Formulae for the covariance matrix of the limiting distribution are provided. Statistical versions of the CLT are established as well. They employ three different estimators of the asymptotic covariance matrix. Some numerical results are also discussed.

Critical slowdown for the Ising model on the two-dimensional lattice

Series
Other Talks
Time
Wednesday, April 7, 2010 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Allan SlyMicrosoft Research, Redmond, WA
Intensive study throughout the last three decades has yielded a rigorous understanding of the spectral-gap of the Glauber dynamics for the Ising model on $Z^2$ everywhere except at criticality. While the critical behavior of the Ising model has long been the focus for physicists, mathematicians have only recently developed an understanding of its critical geometry with the advent of SLE, CLE and new tools to study conformally invariant systems. A rich interplay exists between the static and dynamic models. At the static phase-transition for Ising, the dynamics is conjectured to undergo a critical slowdown: At high temperature the inverse-gap is $O(1)$, at the critical $\beta_c$ it is polynomial in the side-length and at low temperature it is exponential in it. A long series of papers verified this on $Z^2$ except at $\beta=\beta_c$ where the behavior remained unknown. In this work we establish the first rigorous polynomial upper bound for the critical mixing, thus confirming the critical slowdown for the Ising model in $Z^2$. Namely, we show that on a finite box with arbitrary (e.g. fixed, free, periodic) boundary conditions, the inverse-gap at $\beta=\beta_c$ is polynomial in the side-length. The proof harnesses recent understanding of the scaling limit of critical Fortuin-Kasteleyn representation of the Ising model together with classical tools from the analysis of Markov chains. Based on joint work with Eyal Lubetzky.

Stochastic molecular modeling and reduction in reacting systems

Series
Mathematical Biology Seminar
Time
Wednesday, April 7, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Martha GroverSchool of Chemical & Biomolecular Engineering, Georgia Tech
Individual chemical reactions between molecules are inherently stochastic, although for a large collection of molecules, the overall system behavior may appear to be deterministic. When deterministic chemical reaction models are sufficient to describe the behavior of interest, they are a compact way to describe chemical reactions. However, in other cases, these mass-action kinetics models are not applicable, such as when the number of molecules of a particular type is small, or when no closed-form expressions exist to describe the dynamic evolution of overall system properties. The former case is common in biological systems, such as intracellular reactions. The latter case may occur in either small or large systems, due to a lack of smoothness in the reaction rates. In both cases, kinetic Monte Carlo simulations are a useful tool to predict the evolution of overall system properties of interest. In this talk, an approach will be presented for generating approximate low-order dynamic models from kinetic Monte Carlo simulations. The low-order model describes the dynamic evolution of several expected properties of the system, and thus is not a stochastic model. The method is demonstrated using a kinetic Monte Carlo simulation of atomic cluster formation on a crystalline surface. The extremely high dimension of the molecular state is reduced using linear and nonlinear principal component analysis, and the state space is discretized using clustering, via a self-organizing map. The transitions between the discrete states are then computed using short simulations of the kinetic Monte Carlo simulations. These transitions may depend on external control inputs―in this application, we use dynamic programming to compute the optimal trajectory of gallium flux to achieve a desired surface structure.

On Landau Damping

Series
PDE Seminar
Time
Tuesday, April 6, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Clement MouhotEcole Normale Superieure
Landau damping is a collisionless stability result of considerable importance in plasma physics, as well as in galactic dynamics. Roughly speaking, it says that spatial waves are damped in time (very rapidly) by purely conservative mechanisms, on a time scale much lower than the effect of collisions. We shall present in this talk a recent work (joint with C. Villani) which provides the first positive mathematical result for this effect in the nonlinear regime, and qualitatively explains its robustness over extremely long time scales. Physical introduction and implications will also be discussed.

Introduction to Numerical Algebraic Geometry

Series
Research Horizons Seminar
Time
Tuesday, April 6, 2010 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Anton Leykin School of Math, Georgia Tech

Please Note: Hosted by: Huy Huynh and Yao Li

One of the basic problems arising in many pure and applied areas of mathematics is to solve a system of polynomial equations. Numerical Algebraic Geometry starts with addressing this fundamental problem and develops machinery to describe higher-dimensional solution sets (varieties) with approximate data. I will introduce numerical polynomial homotopy continuation, a technique that is radically different from the classical symbolic approaches as it is powered by (inexact) numerical methods.

Joint ACO/OR Seminar - Semi-algebraic optimization theory

Series
Other Talks
Time
Tuesday, April 6, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
ISyE Executive Classroom
Speaker
Adrian LewisSchool of Operations Research and Information, Cornell University
Concrete optimization problems, while often nonsmooth, are not pathologically so. The class of "semi-algebraic" sets and functions - those arising from polynomial inequalities - nicely exemplifies nonsmoothness in practice. Semi-algebraic sets (and their generalizations) are common, easy to recognize, and richly structured, supporting powerful variational properties. In particular I will discuss a generic property of such sets - partial smoothness - and its relationship with a proximal algorithm for nonsmooth composite minimization, a versatile model for practical optimization.

Comparison Methods and Eigenvalue Problems in Cones

Series
Other Talks
Time
Monday, April 5, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Guy DeglaInstitute of Mathematics and Physical Sciences, Benin
The purpose of this talk is to highlight some versions of the Krein-Rutman theorem which have been widely and deeply applied in many fields (e.g., Mathematical Analysis, Geometric Analysis, Physical Sciences, Transport theory and Information Sciences). These versions are motivated by optimization theory, perturbation theory, bifurcation theory, etc. and give rise to some simple but useful comparison methods, in ordered Banach spaces, such as the Dodds-Fremlin theorem and the De Pagter theorem.

Orbitopes

Series
Algebra Seminar
Time
Monday, April 5, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Frank SottileTexas A&M
An orbitope is the convex hull of an orbit of a compact group acting linearly on a vector space. Instances of these highly symmetric convex bodies have appeared in many areas of mathematics and its applications, including protein reconstruction, symplectic geometry, and calibrations in differential geometry.In this talk, I will discuss Orbitopes from the perpectives of classical convexity, algebraic geometry, and optimization with an emphasis on motivating questions and concrete examples. This is joint work with Raman Sanyal and Bernd Sturmfels.

Extrapolation of Carleson measures

Series
Analysis Seminar
Time
Monday, April 5, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Steven HofmannUniversity of Missouri
We discuss joint work with J.-M. Martell, in which werevisit the ``extrapolation method" for Carleson measures, originallyintroduced by John Lewis to proveA_\infty estimates for certain caloric measures, and we present a purely real variable version of the method. Our main result is a general criterion fordeducing that a weight satisfies a ReverseHolder estimate, given appropriate control by a Carleson measure.To illustrate the useof this technique,we reprove a well known theorem of R. Fefferman, Kenig and Pipherconcerning the solvability of the Dirichlet problem with data in some L^p space.

Tight frame, Sparsity and Bregman algorithms

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 5, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Jianfeng CaiDep. of Math. UCLA
 Tight frame is a generalization of orthonormal basis. It  inherits most good properties of orthonormal basis but gains more  robustness to represent signals of intrests due to the redundancy. One can  construct tight frame systems under which signals of interests have sparse  representations. Such tight frames include translation invariant wavelet,  framelet, curvelet, and etc. The sparsity of a signal under tight frame systems has three different formulations, namely, the analysis-based sparsity, the synthesis-based one, and the balanced one between them. In this talk, we discuss Bregman algorithms for finding signals that are sparse under tight frame systems with the above three different formulations. Applications of our algorithms include image inpainting, deblurring, blind deconvolution, and cartoon-texture decomposition. Finally, we apply the linearized Bregman, one of the Bregman algorithms, to solve the problem of matrix completion, where we want to find a low-rank matrix from its incomplete entries. We view the low-rank matrix as a sparse vector under an adaptive linear transformation which depends on its singular vectors. It leads to a singular value thresholding (SVT) algorithm.

Pages