Seminars and Colloquia by Series

Explicit Brauer-Manin obstructions on K3 surfaces

Series
Algebra Seminar
Time
Monday, March 29, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Patrick CornEmory University
We will outline some open questions about rational points on varieties, and present the results of some computations on explicit genus-2 K3 surfaces. For example, we'll show that there are no rational numbers w,x,y,z (not all 0) satisfying the equation w^2 + 4x^6 = 2(y^6 + 343z^6).

Optimized Schwarz Methods in the numerical solution of PDE

Series
Applied and Computational Mathematics Seminar
Time
Monday, March 29, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Luca Gerardo GiordaDep. of Mathematics and Computer Science, Emory University
Schwarz algorithms have experienced a second youth over the lastdecades, when distributed computers became more and more powerful andavailable. In the classical Schwarz algorithm the computational domain is divided into subdomains and Dirichlet continuity is enforced on the interfaces between subdomains. Fundamental convergence results for theclassical Schwarzmethods have been derived for many partial differential equations. Withinthis frameworkthe overlap between subdomains is essential for convergence. More recently, Optimized Schwarz Methods have been developed: based on moreeffective transmission conditions than the classical Dirichlet conditions at theinterfaces between subdomains, such algorithms can be used both with and without overlap. On the other hand, such algorithms show greatly enhanced performance compared to the classical Schwarz method. I will present a survey of Optimized Schwarz Methods for the numerical approximation of partial differential equation, focusing mainly on heterogeneous convection-diffusion and electromagnetic problems.

TIME CHANGE !!!! TIME CHANGE!!! A Stochastic Lagrangian approach to the Navier-Stokes equations

Series
Probability Working Seminar
Time
Friday, March 19, 2010 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 169
Speaker
Sergio AlmadaGeorgia Tech
In this talk I will present an elementary short proof of the existence of global in time H¨older continuous solutions for the Stochastic Navier-Stokes equation with small initial data ( in both, 3 and 2 dimensions). The proof is based on a Stochastic Lagrangian formulation of the Navier-Strokes equations. This talk summarizes several papers by Iyer, Mattingly and Constantin.

Introduction to Khovanov Homology, Part 2

Series
Geometry Topology Working Seminar
Time
Friday, March 19, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Alan DiazSchool of Mathematics, Georgia Tech
Last week we motivated and defined Khovanov homology, an invariant of oriented links whose graded Euler characteristic is the Jones polynomial. We'll discuss the proof of Reidemeister invariance, then survey some important applications and extensions, including Lee theory and Rasmussen's s-invariant, the connection to knot Floer homology, and how the latter was used by Hedden and Watson to show unknot detection for a large class of knots.

A Study of Discrepancy Results in Partially Ordered Sets

Series
Dissertation Defense
Time
Friday, March 19, 2010 - 09:00 for 3 hours
Location
Skiles 269
Speaker
David HowardSchool of Math, Georgia Tech
In 2001, Fishburn, Tanenbaum, and Trenk published a series of two papers that introduced the notions of linear and weak discrepancy of a partially ordered set or poset. Linear discrepancy for a poset is the least k such that for any ordering of the points in the poset there is a pair of incomparable points at least distance k away in the ordering. Weak discrepancy is similar to linear discrepancy except that the distance is observed over weak labelings (i.e. two points can have the same label if they are incomparable, but order is still preserved). My thesis gives a variety of results pertaining to these properties and other forms of discrepancy in posets.

Forbidden paths

Series
ACO Colloquium
Time
Thursday, March 18, 2010 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Jaroslav NesetrilCharles University, Prague

Please Note: ***Refreshments at 4PM in Skiles 236.***

Forbidding (undirected or directed) paths in graphs, what can be easier? Yet we show that in the context of coloring problems (CSP) and structural graph theory, this is related to the notions tree depth, (restricted) dualities, bounded expansion and nowhere dense classes with applications both in and out of combinatorics.

From Soap Bubbles to the Poincare Conjecture

Series
School of Mathematics Colloquium
Time
Thursday, March 18, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Frank MorganDepartment of Mathematics and Statistics, Williams College

Please Note: Light refreshments will be available in Room 236 at 10:30 am.

A single round soap bubble provides the least-area way to enclose a given volume. How does the solution change if space is given some density like r^2 or e^{-r^2} that weights both area and volume? There has been much recent progress by undergraduates. Such densities appear prominently in Perelman's paper proving the Poincare Conjecture. No prerequisites, undergraduates welcome.

Interpolation in the Drury-Arveson Space

Series
Analysis Seminar
Time
Wednesday, March 17, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Brett WickGeorgia Tech
The Drury-Arveson space of functions on the unit ball in C^n has recently been intensively studied from the point of view function theory and operator theory. While much is known about this space of functions, a characterization of the interpolating sequences for the space has still remained elusive. In this talk, we will discuss the relevant background of the problem, and then I will discuss some work in progress and discuss a variant of the question for which we know the answer completely.

Joint DOS/ACO Seminar - The reflex algorithm - Convex optimization by random reflection

Series
Other Talks
Time
Wednesday, March 17, 2010 - 13:30 for 1 hour (actually 50 minutes)
Location
ISyE Executive Classroom
Speaker
Merrick FurstCollege of Computing, Georgia Tech
Santosh Vempala and I have been exploring an intriguing new approach to convex optimization. Intuition about first-order interior point methods tells us that a main impediment to quickly finding an inside track to optimal is that a convex body's boundary can get in one's way in so many directions from so many places. If the surface of a convex body is made to be perfectly reflecting then from every interior vantage point it essentially disappears. Wondering about what this might mean for designing a new type of first-order interior point method, a preliminary analysis offers a surprising and suggestive result. Scale a convex body a sufficient amount in the direction of optimization. Mirror its surface and look directly upwards from anywhere. Then, in the distance, you will see a point that is as close as desired to optimal. We wouldn't recommend a direct implementation, since it doesn't work in practice. However, by trial and error we have developed a new algorithm for convex optimization, which we are calling Reflex. Reflex alternates greedy random reflecting steps, that can get stuck in narrow reflecting corridors, with simply-biased random reflecting steps that escape. We have early experimental experience using a first implementation of Reflex, implemented in Matlab, solving LP's (can be faster than Matlab's linprog), SDP's (dense with several thousand variables), quadratic cone problems, and some standard NETLIB problems.

The reflex algorithm - Convex optimization by random reflection

Series
ACO Student Seminar
Time
Wednesday, March 17, 2010 - 13:30 for 1 hour (actually 50 minutes)
Location
ISyE Executive Classroom
Speaker
Prof. Merrick FurstComputer Science, Georgia Tech
Santosh Vempala and I have been exploring an intriguing newapproach to convex optimization. Intuition about first-order interiorpoint methods tells us that a main impediment to quickly finding aninside track to optimal is that a convex body's boundary can get inone's way in so many directions from so many places. If the surface ofa convex body is made to be perfectly reflecting then from everyinterior vantage point it essentially disappears. Wondering about whatthis might mean for designing a new type of first-order interior pointmethod, a preliminary analysis offers a surprising and suggestiveresult. Scale a convex body a sufficient amount in the direction ofoptimization. Mirror its surface and look directly upwards fromanywhere. Then, in the distance, you will see a point that is as closeas desired to optimal. We wouldn't recommend a direct implementation,since it doesn't work in practice. However, by trial and error we havedeveloped a new algorithm for convex optimization, which we arecalling Reflex. Reflex alternates greedy random reflecting steps, thatcan get stuck in narrow reflecting corridors, with simply-biasedrandom reflecting steps that escape. We have early experimentalexperience using a first implementation of Reflex, implemented inMatlab, solving LP's (can be faster than Matlab's linprog), SDP's(dense with several thousand variables), quadratic cone problems, andsome standard NETLIB problems.

Pages