Seminars and Colloquia by Series

Euler's pentagonal numbers theorem - refinements, variations and companions

Series
School of Mathematics Colloquium
Time
Thursday, October 28, 2010 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Krishnaswami AlladiUniversity of Florida
Euler's celebrated pentagonal numbers theorem is one themost fundamental in the theory of partitions and q-hypergeometric series.The recurrence formula that it yields is what MacMahon used to compute atable of values of the partition function to verify the deep Hardy-Ramanujanformula. On seeing this table, Ramanujan wrote down his spectacular partition congruences. The author recently proved two new companions to Euler'stheorem in which the role of the pentagonal numbers is replaced by the squares.These companions are deeper in the sense that lacunarity can be achievedeven with the introduction of a parameter. One of these companions isdeduced from a partial theta identity in Ramanujan's Lost Notebook and theother from a q-hypergeometric identity of George Andrews. We will explainconnections between our companions and various classical results such asthe Jacobi triple product identity for theta functions and the partitiontheorems of Sylvester and Fine. The talk will be accessible to non-experts.

Rational Inner Functions in the Schur-Agler Class

Series
Analysis Seminar
Time
Wednesday, October 27, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Greg KneseUniversity of Alabama
The Schur-Agler class is a subclass of the bounded analytic functions on the polydisk with close ties to operator theory. We shall describe our recent investigations into the properties of rational inner functions in this class. Non-minimality of transfer function realization, necessary and sufficient conditions for membership (in special cases), and low degree examples are among the topics we will discuss.

Branched Covers in Contact Geometry

Series
Other Talks
Time
Wednesday, October 27, 2010 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Meredith CaseySchool of Mathematics, Georgia Tech

Please Note: This talk will be the oral examination for Meredith Casey.

I will first discuss the motivation and background information necessary to study the subjects of branched covers and of contact geometry. In particular we will give some examples and constructions of topological branched covers as well as present the fundamental theorems in this area. But little is understood about the general constructions, and even less about how branched covers behave in the setting of contact geometry, which is the focus of my research. The remainder of the talk will focus on the results I have thus far and current projects.

Sticky particle dynamics with interactions

Series
Research Horizons Seminar
Time
Wednesday, October 27, 2010 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Michael WestdickenbergSchool of Mathematics - Georgia Institute of Technology

Please Note: Hosts: Yao Li and Ricardo Restrepo

We consider compressible fluid flows in Lagrangian coordinates in one space dimension. We assume that the fluid self-interacts through a force field generated by the fluid. We explain how this flow can be described by a differential inclusion on the space of transport maps, when the sticky particle dynamics is assumed. We prove a stability result for solutions of this system. Global existence then follows from a discrete particle approximation.

Some Applications of Nonlinear Dynamics and Statistical Physics in Critical Care

Series
Mathematical Biology Seminar
Time
Wednesday, October 27, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 169
Speaker
Anton BurykinEmory University Center for Critical Care
Critical care is a branch of medicine concerned with the provision of life support or organ support systems in patients who are critically ill and require intensive monitoring. Such monitoring allows us to collect massive amounts of data (usually at the level of organ dynamics, such as electrocardiogram, but recently also at the level of genes). In my talk I’ll show several examples of how ideas from nonlinear dynamics and statistical physics can be applied for the analysis of these data in order to understand and eventually predict physiologic status of critically ill patients: (1) Heart beats, respiration and blood pressure variations can be viewed as a dynamics of a system of coupled nonlinear oscillators (heart, lungs, vessels). From this perspective, a live support devise (e.g. mechanical ventilator used to support breathing) acts as an external driving force on one of the oscillators (lungs). I’ll show that mechanical ventilator entrances the dynamics of whole cardiovascular system and leads to phase synchronization between respiration and heart beats. (2) Then I’ll discuss how fluctuation-dissipation theorem can be used in order to predict heart rate relaxation after a stress (e.g. treadmill exercise test) from the heart rate fluctuations during the stress. (3) Finally, I’ll demonstrate that phase space dynamics of leukocyte gene expression during critical illness and recovery has an attractor state, associated with immunological health.

Tropical Bernstein's theorem

Series
Tropical Geometry Seminar
Time
Wednesday, October 27, 2010 - 10:05 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Anton LeykinGeorgia Tech
The classical Bernstein's theorem says that the number of roots of a system of sparse polynomials with generic coefficients equals the mixed volume of the Newton polytopes of the polynomials. We shall sketch a constructive proof by describing the solutions in the field of Puiseux series. The tropical Bernstein's theorem says that the number of tropical roots of a system of sparse tropical polynomials with generic coefficients equals the mixed volume of the Newton polytopes. We will prove this using the Huber--Sturmfels method for computing mixed volumes with regular mixed subdivisions of polytopes. Side topics: computation of mixed volumes, polyhedral homotopy continuation (finding complex solutions of a sparse polynomial system).

Well-posedness theory for compressible Euler equations in a physical vacuum

Series
PDE Seminar
Time
Tuesday, October 26, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Prof. Juhi JangDepartment of Mathematics, University of California, Riverside
An interesting problem in gas and fluid dynamics is to understand the behavior of vacuum states, namely the behavior of the system in the presence of vacuum. A particular interest is so called physical vacuum which naturally arises in physical problems. The main difficulty lies in the fact that the physical systems become degenerate along the boundary. I'll present the well- posedness result of 3D compressible Euler equations for polytropic gases. This is a joint work with Nader Masmoudi.

Group Dynamics in Phototaxis

Series
School of Mathematics Colloquium
Time
Tuesday, October 26, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Doron LevyCSCAMM University of Maryland (College Park)
Microbes live in environments that are often limiting for growth. They have evolved sophisticated mechanisms to sense changes in environmental parameters such as light and nutrients, after which they swim or crawl into optimal conditions. This phenomenon is known as "chemotaxis" or "phototaxis." Using time-lapse video microscopy we have monitored the movement of phototactic bacteria, i.e., bacteria that move towards light. These movies suggest that single cells are able to move directionally but at the same time, the group dynamics is equally important. Following these observations, in this talk we will present a hierarchy of mathematical models for phototaxis: a stochastic model, an interacting particle system, and a system of PDEs. We will discuss the models, their simulations, and our theorems that show how the system of PDEs can be considered as the limit dynamics of the particle system. Time-permitting, we will overview our recent results on particle, kinetic, and fluid models for phototaxis. This is a joint work with Devaki Bhaya (Department of Plant Biology, Carnegie Institute), Tiago Requeijo (Math, Stanford), and Seung-Yeal Ha (Seoul, Korea).

A polynomial invariant of pseudo-Anosov maps

Series
Geometry Topology Seminar
Time
Monday, October 25, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Joan BirmanBarnard College-Columbia University
Pseudo-Anosov mapping classes on surfaces have a rich structure, uncovered by William Thurston in the 1980's. We will discuss the 1995 Bestvina-Handel algorithmic proof of Thurston's theorem, and in particular the "transition matrix" T that their algorithm computes. We study the Bestvina-Handel proof carefully, and show that the dilatation is the largest real root of a particular polynomial divisor P(x) of the characteristic polynomial C(x) = | xI-T |. While C(x) is in general not an invariant of the mapping class, we prove that P(x) is. The polynomial P(x) contains the minimum polynomial M(x) of the dilatation as a divisor, however it does not in general coincide with M(x).In this talk we will review the background and describe the mathematics that underlies the new invariant. This represents joint work with Peter Brinkmann and Keiko Kawamuro.

Energy-based fracture evolution

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 25, 2010 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 002 (Ground floor, entrance from Skiles courtyard)
Speaker
Christopher LarsenWPI
I will describe a sequence of models for predicting crack paths in brittlematerials, with each model based on some type of variational principleconcerning the energy. These models will cover the natural range ofstatics, quasi-statics, and dynamics. Some existence results will bedescribed, but the emphasis will be on deficiencies of the models and openquestions.

Pages