Seminars and Colloquia by Series

Classical Solutions of Two Dimensional Inviscid Rotating Shallow Water System

Series
PDE Seminar
Time
Tuesday, November 10, 2009 - 15:05 for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
Chunjing XieUniversity of Michigan, Ann Arbor
In this talk, we will discuss the global existence and asymptotic behavior of classical solutions for two dimensional inviscid Rotating Shallow Water system with small initial data subject to the zero-relative-vorticity constraint. One of the key steps is a reformulation of the problem into a symmetric quasilinear Klein-Gordon system, for which the global existence of classical solutions is then proved with combination of the vector field approach and the normal forms. We also probe the case of general initial data and reveal a lower bound for the lifespan that is almost inversely proportional to the size of the initial relative vorticity. This is joint work with Bin Cheng.

Seip's Interpolation Theorem in Weighted Bergman Spaces

Series
Analysis Working Seminar
Time
Monday, November 9, 2009 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Brett WickGeorgia Tech
We are going to continue explaining the proof of Seip's Interpolation Theorem for the Bergman Space. We are going to demonstrate the sufficiency of these conditions for a certain example. We then will show how to deduce the full theorem with appropriate modifications of the example.

On the Legendrian and transverse classification of cabled knot types

Series
Geometry Topology Seminar
Time
Monday, November 9, 2009 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Bulent TosunGa Tech
In 3-dimensional contact topology one of the main problem is classifying Legendrian (transverse) knots in certain knot type up to Legendrian ( transverse) isotopy. In particular we want to decide if two (one in case of transverse knots) classical invariants of this knots are complete set of invariants. If it is, then we call this knot type Legendrian (transversely) simple knot type otherwise it is called Legendrian (transversely) non-simple. In this talk, by tracing the techniques developed by Etnyre and Honda, we will present some results concerning the complete Legendrian and transverse classification of certain cabled knots in the standard tight contact 3-sphere. Moreover we will provide an infinite family of Legendrian and transversely non-simple prime knots.

Fast algorithms for the computation of the pseudospectral abscissa and pseudospectral radius.

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 9, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Nicola GuglielmiUniversità di L'Aquila
This is a joint work with Michael Overton (Courant Institute, NYU). The epsilon-pseudospectral abscissa and radius of an n x n matrix are respectively the maximum real part and the maximal modulus of points in its epsilon-pseudospectrum. Existing techniques compute these quantities accurately but the cost is multiple SVDs of order n, which makesthe method suitable to middle size problems. We present a novel approach based on computing only the spectral abscissa or radius or a sequence of matrices, generating a monotonic sequence of lower bounds which, in many but not all cases, converges to the pseudospectral abscissa or radius.

Quasi Non-Integrable Hamiltonian System and its Applications

Series
CDSNS Colloquium
Time
Monday, November 9, 2009 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Dongwei HuangTianjin Polytechnic University, China and School of Mathematics, Georgia Tech
Many dynamical systems may be subject to stochastic excitations, so to find an efficient method to analyze the stochastic system is very important. As for the complexity of the stochastic systems, there are not any omnipotent methods. What I would like to present here is a brief introduction to quasi-non-integrable Hamiltonian systems and stochastic averaging method for analyzing certain stochastic dynamical systems. At the end, I will give some examples of the method.

Graph Tiling in Bipartite Graphs

Series
Combinatorics Seminar
Time
Friday, November 6, 2009 - 15:05 for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
Albert BushSchool of Mathematics, Georgia Tech

Please Note: This is joint work with Dr. Yi Zhao.

Graph tiling problems can be summarized as follows: given a graph H, what conditions do we need to find a spanning subgraph of some larger graph G that consists entirely of disjoint copies of H. The most familiar example of a graph tiling problem is finding a matching in a graph. With the Regularity Lemma and the Blow-up Lemma as our main tools, we prove a degree condition that guarantees an arbitrary bipartite graph G will be tiled by an arbitrary bipartite graph H. We also prove this degree condition is best possible up to a constant. This answers a question of Zhao and proves an asymptotic version of a result of Kuhn and Osthus for bipartite graphs.

Constructing 3-Manifolds Using Dehn Surgery on Handlebodies

Series
Geometry Topology Working Seminar
Time
Friday, November 6, 2009 - 15:00 for 2 hours
Location
Skiles 269
Speaker
Meredith CaseyGeorgia Tech
The goal of this talk is to describe simple constructions by which we can construct any compact, orientable 3-manifold. It is well-known that every orientable 3-manifold has a Heegaard splitting. We will first define Heegaard splittings, see some examples, and go through a very geometric proof of this therem. We will then focus on the Dehn-Lickorish Theorem, which states that any orientation-preserving homeomorphism of an oriented 2-manifold without boundary can by presented as the composition of Dehn twists and homeomorphisms isotopic to the identity. We will prove this theorm, and then see some applications and examples. With both of these resutls together, we will have shown that using only handlebodies and Dehn twists one can construct any compact, oriented 3-manifold.

Small noise limit for dynamics near unstable critical points (Oral Comprehensive Exam).

Series
Other Talks
Time
Friday, November 6, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 154
Speaker
Sergio AlmadaGeorgia Tech
We consider the Stochastic Differential Equation $dX_\epsilon=b(X_\epsilon)dt + \epsilon dW$ . Given a domain D, we study how the exit time and the distribution of the process at the time it exits D behave as \epsilon goes to 0. In particular, we cover the case in which the unperturbed system $\frac{d}{dt}x=b(x)$ has a unique fixed point of the hyperbolic type. We will illustrate how the behavior of the system is in the linear case. We will remark how our results give improvements to the study of systems admitting heteroclinic or homoclinic connections. We will outline the general proof in two dimensions that requires normal form theory from differential equations. For higher dimensions, we introduce a new kind of non-smooth stochastic calculus.

Online Algorithms for Graphs and Partially Ordered Sets

Series
SIAM Student Seminar
Time
Friday, November 6, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Mitch KellerSchool of Mathematics, Georgia Tech
Suppose that Amtrak runs a train from Miami, Florida, to Bangor, Maine. The train makes stops at many locations along the way to drop off passengers and pick up new ones. The computer system that sells seats on the train wants to use the smallest number of seats possible to transport the passengers along the route. If the computer knew before it made any seat assignments when all the passengers would get on and off, this would be an easy task. However, passengers must be given seat assignments when they buy their tickets, and tickets are sold over a period of many weeks. The computer system must use an online algorithm to make seat assignments in this case, meaning it can use only the information it knows up to that point and cannot change seat assignments for passengers who purchased tickets earlier. In this situation, the computer cannot guarantee it will use the smallest number of seats possible. However, we are able to bound the number of seats the algorithm will use as a linear function of the minimum number of seats that could be used if assignments were made after all passengers had bought their tickets. In this talk, we'll formulate this problem as a question involving coloring interval graphs and discuss online algorithms for other questions on graphs and posets. We'll introduce or review the needed concepts from graph theory and posets as they arise, minimizing the background knowledge required.

Integrated random walks: the probability to stay positive

Series
Stochastics Seminar
Time
Thursday, November 5, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Vlad VysotskyUniversity of Delaware
Let $S_n$ be a centered random walk with a finite variance, and define the new sequence $\sum_{i=1}^n S_i$, which we call the {\it integrated random walk}. We are interested in the asymptotics of $$p_N:=\P \Bigl \{ \min \limits_{1 \le k \le N} \sum_{i=1}^k S_i \ge 0 \Bigr \}$$ as $N \to \infty$. Sinai (1992) proved that $p_N \asymp N^{-1/4}$ if $S_n$ is a simple random walk. We show that $p_N \asymp N^{-1/4}$ for some other types of random walks that include double-sided exponential and double-sided geometric walks (not necessarily symmetric). We also prove that $p_N \le c N^{-1/4}$ for lattice walks and upper exponential walks, i.e., walks such that $\mbox{Law} (S_1 | S_1>0)$ is an exponential distribution.

Pages