Seminars and Colloquia by Series

Seip's Interpolation Theorem in Weighted Bergman Spaces

Series
Analysis Working Seminar
Time
Monday, November 16, 2009 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Brett WickGeorgia Tech
We are going to continue explaining the proof of Seip's Interpolation Theorem for the Bergman Space. We are going to demonstrate the sufficiency of these conditions for a certain example. We then will show how to deduce the full theorem with appropriate modifications of the example.

Multiscale modeling of granular flow

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 16, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Chris RycroftUC-Berkeley
Due to an incomplete picture of the underlying physics, the simulation of dense granular flow remains a difficult computational challenge. Currently, modeling in practical and industrial situations would typically be carried out by using the Discrete-Element Method (DEM), individually simulating particles according to Newton's Laws. The contact models in these simulations are stiff and require very small timesteps to integrate accurately, meaning that even relatively small problems require days or weeks to run on a parallel computer. These brute-force approaches often provide little insight into the relevant collective physics, and they are infeasible for applications in real-time process control, or in optimization, where there is a need to run many different configurations much more rapidly. Based upon a number of recent theoretical advances, a general multiscale simulation technique for dense granular flow will be presented, that couples a macroscopic continuum theory to a discrete microscopic mechanism for particle motion. The technique can be applied to arbitrary slow, dense granular flows, and can reproduce similar flow fields and microscopic packing structure estimates as in DEM. Since forces and stress are coarse-grained, the simulation technique runs two to three orders of magnitude faster than conventional DEM. A particular strength is the ability to capture particle diffusion, allowing for the optimization of granular mixing, by running an ensemble of different possible configurations.

Spectral methods in Hamiltonian PDE

Series
CDSNS Colloquium
Time
Monday, November 16, 2009 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Wei-Min WangUniversite Paris-Sud, France
We present a new theory on Hamiltonian PDE. The linear theory solves an old spectral problem on boundedness of L infinity norm of the eigenfunctions of the Schroedinger operator on the 2-torus. The nonlinear theory develops Fourier geometry, eliminates the convexity condition on the (infinite dimension) Hamiltonian and is natural for PDE.

Stability methods and extremal graph theory

Series
Combinatorics Seminar
Time
Friday, November 13, 2009 - 15:05 for 2 hours
Location
Skiles 255
Speaker
Miklos SimonovitsAlfred Renyi Institute, Budapest, Hungary

Stability methods are often used in extremal graph theory, Ramsey theory and similar areas, where an extremal problem is to be solved and

  1. we have a conjecture about the structure of the conjectured extremal configurations and according to our conjecture, it has some given property \mathcal P;
  2. we can prove that all the almost extremal structures are near to the property \mathcal P, in some sense;
  3. if we knew that if a structure is near to the property \mathcal P and is extremal, then it is already the conjectured structure.

Of course, stability methods can also be used in other cases, but we restrict ourselves to the above two areas.

In my lecture I will give an introduction to the applications of the stability methods in extremal graph theory, describe cases in extremal graph theory, extremal hypergraph theory, in the Erdos-Frankl-Rold (= generalized Erdos-Kleitman-Rothschild theory) ...

In the second part of my lecture I shall describe the application of this method to the Erdos-Sos conjecture. This is part of our work with Ajtai, Komlos and Szemeredi.

From Gibbs free energy to the dynamical system with random perturbation

Series
SIAM Student Seminar
Time
Friday, November 13, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Yao LiSchool of Mathematics, Georgia Tech
Gibbs free energy plays an important role in thermodynamics and has strong connection with PDE, Dynamical system. The results about Gibbsfree energy in 2-Wasserstein metric space are known recently.First I will introduce some basic things, so the background knowledge isnot required. I will begin from the classic definition of Gibbs freeenergy functional and then move to the connection between Gibbs freeenergy and the Fokker-Planck equation, random perturbation of gradientsystems. Second, I will go reversely: from a dynamical system to thegeneralized Gibbs free energy functional. I will also talk about animportant property of the Gibbs free energy functional: TheFokker-Planck equation is the gradient flux of Gibbs free energyfunctional in 2-Wasserstein metric.So it is natural to consider a question: In topological dynamical systemand lattice dynamical system, could we give the similar definition ofGibbs free energy, Fokker-Planck equation and so on? If time allowed, Iwill basicly introduce some of my results in these topics.

Extremal graph theory and related areas

Series
ACO Colloquium
Time
Thursday, November 12, 2009 - 16:30 for 2 hours
Location
Skiles 255
Speaker
Miklos SimonovitsAlfred Renyi Institute, Budapest, Hungary
In my talk I will give a survey on the rise and early development of Extremal Graph Theory, one of the large areas in Discrete Mathematics.I will give a description of the asymptotic solution of extremal graph problems for ordinary graphs, describe the stability method and expose the difficulties connected to hypergraph extremal problems.I will expose several unsolved problems in the field, and move on to some new results.I will also describe the connection of the field to several other areas of Discrete Mathematics, like to Ramsey Theory,Random graphs, Regularity lemma, Quasi-randomness, etc.I will also mention some applications of extremal graph theory. The lecture will be a non-technical one.***Refreshments at 4PM in Skiles 236.***

Estimation, Prediction and the Stein Phenomenon under Divergence Loss

Series
Stochastics Seminar
Time
Thursday, November 12, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Gauri DataUniversity of Georgia
We consider two problems: (1) estimate a normal mean under a general divergence loss introduced in Amari (1982) and Cressie and Read (1984) and (2) find a predictive density of a new observation drawn independently of the sampled observations from a normal distribution with the same mean but possibly with a different variance under the same loss. The general divergence loss includes as special cases both the Kullback-Leibler and Bhattacharyya-Hellinger losses. The sample mean, which is a Bayes estimator of the population mean under this loss and the improper uniform prior, is shown to be minimax in any arbitrary dimension. A counterpart of this result for predictive density is also proved in any arbitrary dimension. The admissibility of these rules holds in one dimension, and we conjecture that the result is true in two dimensions as well. However, the general Baranchik (1970) class of estimators, which includes the James-Stein estimator and the Strawderman (1971) class of estimators, dominates the sample mean in three or higher dimensions for the estimation problem. An analogous class of predictive densities is defined and any member of this class is shown to dominate the predictive density corresponding to a uniform prior in three or higher dimensions. For the prediction problem, in the special case of Kullback-Leibler loss, our results complement to a certain extent some of the recent important work of Komaki (2001) and George, Liang and Xu (2006). While our proposed approach produces a general class of predictive densities (not necessarily Bayes) dominating the predictive density under a uniform prior, George et al. (2006) produced a class of Bayes predictors achieving a similar dominance. We show also that various modifications of the James-Stein estimator continue to dominate the sample mean, and by the duality of the estimation and predictive density results which we will show, similar results continue to hold for the prediction problem as well. This is a joint research with Professor Malay Ghosh and Dr. Victor Mergel.

A topological separation condition for attractors of contraction mapping systems

Series
Analysis Seminar
Time
Wednesday, November 11, 2009 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Sergiy BorodachovTowson University
We consider finite systems of contractive homeomorphisms of a complete metric space, which are non-redundanton every level. In general, this condition is weaker than the strong open set condition and is not equivalent to the weak separation property. We show that the set of N-tuples of contractive homeomorphisms, which satisfy this separation condition is a G_delta set in the topology of pointwise convergence of every component mapping with an additional requirement that the supremum of contraction coefficients of mappings in the sequence be strictly less than one.We also give several sufficient conditions for this separation property. For every fixed N-tuple of dXd invertible contraction matrices from a certain class, we obtain density results for vectors of fixed points, which defineN-tuples of affine contraction mappings having this separation property. Joint work with Tim Bedford (University of Strathclyde) and Jeff Geronimo (Georgia Tech).

Derived functors and Cech cohomology

Series
Other Talks
Time
Wednesday, November 11, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Farbod ShokriehGa Tech
We will show that the construction of derived functors satisfy the required universal property.I will then show that, for any ringed space, the abelian category of all sheaves of Modules has enough injectives. We achieve this by first characterizing injective abelian groups (Baer's theorem).The relation with Cech cohomology will also be studied. In particular, I will show that the first Cech and Grothendieck sheaf cohomology groups are isomorphic for any topological space (without using spectral sequences).

Topological aspects in the theory of aperiodic solids and tiling spaces

Series
Research Horizons Seminar
Time
Wednesday, November 11, 2009 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Jean BellissardSchool of Mathematics, Georgia Tech
An assembly of atoms in a solid phase will be described through the notion of Delone sets and related to tilings. The Hull and the tiling space wiill be defined. It will be shown that the tiling space and the Hull can be constructed through an inverse limit of CW-complexes built out of the tiles and of the local patches. From then various cohomologies can be defined and allow to distinguish between these atomic distributions. The question of whether these topological invariant can be seen in experiments will be addressed.

Pages