Seminars and Colloquia Schedule

Oral Comprehensive Exam

Series
Geometry Topology Seminar
Time
Monday, April 18, 2011 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Becca WinarskiGeorgia Tech

The actual talk will be 40 minutes. Note the unusual time.

The theorem of Birman and Hilden relates the mapping class group of a surface and its image under a covering map. I'll explore when we can extend the original theorem and possible applications for further work.

A Piecewise Smooth Image Segmentation Using Gamma-Convergence Approximation in Medical Imaging

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 18, 2011 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
JungHa An California State University, Stanislaus
Medical imaging is the application of mathematical and engineering models to create images of the human body for clinical purposes or medical science by using a medical device. One of the main objectives of medical imaging research is to find the boundary of the region of the interest. The procedure to find the boundary of the region of the interest is called a segmentation. The purpose of this talk is to present a variational region based algorithm that is able to deal with spatial perturbations of the image intensity directly. Image segmentation is obtained by using a Gamma-Convergence approximation for a multi-scale piecewise smooth model. This model overcomes the limitations of global region models while avoiding the high sensitivity of local approaches. The proposed model is implemented efficiently using recursive Gaussian convolutions. The model is applied to magnetic resonance (MR) images where image quality depends highly on the acquisition protocol. Numerical experiments on 2-dimensional human liver MR images show that our model compares favorably to existing methods.This work is done in collaborated with Mikael Rousson and Chenyang Xu.

A combinatorial spanning tree model for delta-graded knot Floer homology

Series
Geometry Topology Seminar
Time
Monday, April 18, 2011 - 14:20 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
John BaldwinPrinceton
I'll describe a new combinatorial method for computing the delta-graded knot Floer homology of a link in S^3. Our construction comes from iterating an unoriented skein exact triangle discovered by Manolescu, and yields a chain complex for knot Floer homology which is reminiscent of that of Khovanov homology, but is generated (roughly) by spanning trees of the black graph of the link. This is joint work with Adam Levine.

Two-dimensional Riemann problems for compressible Euler systems

Series
PDE Seminar
Time
Tuesday, April 19, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Yuxi ZhengPenn State University and Yeshiva University,
We consider Riemann problems for the compressible Euler system in aerodynamics in two space dimensions. The solutionsinvolve shock waves, hyperbolic and elliptic regions. There are also regions which we call semi-hyperbolic. We have shownbefore the existence of such solutions, and now we show regularity of the boundaries of such regions.

Hardy-Sobolev-Maz'ya Inequalities for Fractional Integrals on Halfspaces and Convex Domains

Series
Dissertation Defense
Time
Tuesday, April 19, 2011 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Craig A. SloaneSchool of Mathematics, Georgia Tech
Classical Hardy, Sobolev, and Hardy-Sobolev-Maz'ya inequalities are well known results that have been studied for awhile. In recent years, these results have been been generalized to fractional integrals. This Dissertation proves a new Hardy inequality on general domains, an improved Hardy inequality on bounded convex domains, and that the sharp constant for any convex domain is the same as that known for the upper halfspace. We also prove, using a new type of rearrangement on the upper halfspace, based in part on Carlen and Loss' concept of competing symmetries, the existence of the fractional Hardy-Sobolev-Maz'ya inequality in the case p = 2, as well as proving the existence of minimizers, at least in limited cases.

A statistical model applied to 544 in vivo HIV-1 recombinants reveals that viral genomic features, especially RNA structure, promote recombination

Series
Mathematical Biology Seminar
Time
Wednesday, April 20, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Karin Dorman Departments of Statistics and of Genetics, Development and Cell Biology, Iowa State University
It has long been postulated and somewhat confirmed with limited biological experiment, that RNA structure affects the propensity of HIV-1 reverse transcriptase to undergo strand transfer, a prerequisite for recombination. Our goal was to use the large resource of in vivo recombinants isolated from patients and stored in the HIV database to determine whether there were signals in the HIV-1 genetic sequence, such as propensity to form RNA secondary structure, that promote recombination. Starting from 65,000 HIV-1 sequences at least 400 nucleotides long, we identified 2,360 recombinants involving exactly two distinct subtypes. Since we were interested in mechanistic causes, rather than selective causes, we reduced the number of recombinants to 544 verifiably unique events. We then fit a Gaussian Markov Random Field model with covariates in the mean to assess the impact of genetic features on recombination. We found SHAPE reactivities to be most strongly and negatively correlated with recombination rates, which agrees with the observation that pairing probabilities had an opposite, strong relationship with recombination. Less strongly associated, but still significant, we found G-rich stretches positively correlated, thermal stability negatively correlated, and GC content positively correlated with recombination. Interestingly, known in vitro hotspots did not explain much of the in vivo recombination.

Music, Time-Frequency Shifts, and Linear Independence

Series
Research Horizons Seminar
Time
Wednesday, April 20, 2011 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chris HeilSchool of Mathematics - Georgia Institute of Technology

Hosts: Amey Kaloti and Ricardo Restrepo

Fourier series provide a way of writing almost any signal as a superposition of pure tones, or musical notes.  But this representation is not local, and does not reflect the way that music is actually generated by instruments playing individual notes at different times.  We will discuss time-frequency representations, which are a type of local Fourier representation of signals.  This gives us a mathematical model for representing music.  While the model is crude for music, it is in fact apowerful mathematical representation that has appeared widely throughout mathematics (e.g., partial differential equations), physics (e.g., quantum mechanics), and engineering (e.g., time-varying filtering).  We ask one very basic question: are the notes in this representation linearly independent?  This seemingly trivial question leads to surprising mathematical difficulties.

Hydrodynamic Analogues of Quantum Systems

Series
Math Physics Seminar
Time
Wednesday, April 20, 2011 - 15:00 for 1 hour (actually 50 minutes)
Location
Physics Howey L5
Speaker
John BushDepartment of Mathematics, MIT

Hosted by Predrag Cvitanović, School of Physics, Georgia Tech.

Yves Couder and coworkers have recently reported the results of a startling series of experiments in which droplets bouncing on a fluid surface exhibit wave-particle duality and, as a consequence, several dynamical features previously thought to be peculiar to the microscopic realm, including single-particle diffraction, interference, tunneling and quantized orbits. We explore this fluid system in light of the Madelung transformation, whereby Schrodinger's equation is recast in a hydrodynamic form. Doing so reveals a remarkable correspondence between bouncing droplets and subatomic particles, and provides rationale for the observed macroscopic quantum behaviour. New experiments are presented, and indicate the potential value of this hydrodynamic approach to both visualizing and understanding quantum mechanics.

Topology of representation varieties of surface groups

Series
School of Mathematics Colloquium
Time
Thursday, April 21, 2011 - 11:01 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Richard WentworthUniversity of Maryland
This will be a survey talk on some aspects of the geometry and topology of moduli spaces of representations of surface groups into Lie groups. I will discuss recent generalizations of the techniques of Atiyah and Bott on equivariant Morse theory. These extend results on stable bundles to Higgs bundles and associated moduli spaces, which correspond to representation varieties into noncompact Lie groups

Control of Multi-Robot Networks

Series
Graph Theory Seminar
Time
Thursday, April 21, 2011 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Magnus EgerstedtECE, GT
Arguably, the overarching scientific challenge facing the area of networked robot systems is that of going from local rules to global behaviors in a predefined and stable manner. In particular, issues stemming from the network topology imply that not only must the individual agents satisfy some performance constraints in terms of their geometry, but also in terms of the combinatorial description of the network. Moreover, a multi-agent robotic network is only useful inasmuch as the agents can be redeployed and reprogrammed with relative ease, and we address these two issues (local interactions and programmability) from a controllability point-of-view. In particular, the problem of driving a collection of mobile robots to a given target destination is studied, and necessary conditions are given for this to be possible, based on tools from algebraic graph theory. The main result will be a necessary condition for an interaction topology to be controllable given in terms of the network's external, equitable partitions.

Meixner matrix ensembles

Series
Stochastics Seminar
Time
Thursday, April 21, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wlodek BrycUniversity of Cincinnati

Hosted by Christian Houdre and Liang Peng.

In this talk I will discuss random matrices that are matricial analogs of the well known binomial, Poisson, and negative binomial random variables. The common thread is the conditional variance of X given S = X+X', which is a quadratic polynomial in S and in the univariate case describes the family of six Meixner laws that will be described in the talk. The Laplace transform of a general n by n Meixner matrix ensemble satisfies a system of PDEs which is explicitly solvable for n = 2. The solutions lead to a family of six non-trivial 2 by 2 Meixner matrix ensembles. Constructions for the "elliptic cases" generalize to n by n matrices. The talk is based on joint work with Gerard Letac.

Khovanov Homology and Slice Genus

Series
SIAM Student Seminar
Time
Friday, April 22, 2011 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 246
Speaker
Amey KalotiSchool of Mathematics, Georgia Tech

Hosted also by Ben Webb

We will try to define what Khovanov homology for a link in a S^3 is. We will then try to give a proof figuring out unknotting number of certain kinds of knots in S^3.

On the Huynh-Le Quantum Determinant and the Head and Tail of the Colored Jones Polynomial

Series
Geometry Topology Seminar
Time
Friday, April 22, 2011 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
C. ArmondLouisiana State University
In this talk I will describe how the quantum determinant modelof the Colored Jones polynomial, developed by Vu Huynh and Thang Le can beinterpreted in a combinatorial way as walks along a braid. Thisinterpretation can then be used to prove that the leading coefficients ofthe colored Jones polynomial stabalize, defining two power series calledthe head and the tail. I will also show examples where the head and tailcan be calculated explicitly and have applications in number theory.

Testing Odd-Cycle Freeness of Boolean Functions

Series
Combinatorics Seminar
Time
Friday, April 22, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Elena GrigorescuCollege of Computing, Georgia Tech
In the Property Testing model an algorithm is required to distinguish between the case that an object has a property or is far from having the property. Recently, there has been a lot of interest in understanding which properties of Boolean functions admit testers making only a constant number of queries, and a common theme investigated in this context is linear invariance. A series of gradual results has led to a conjectured characterization of all testable linear invariant properties. Some of these results consider properties where the query upper bounds are towers of exponentials of large height dependent on the distance parameter. A natural question suggested by these bounds is whether there are non-trivial families with testers making only a polynomial number of queries in the distance parameter.In this talk I will focus on a particular linear-invariant property where this is indeed the case: odd-cycle freeness.Informally, a Boolean function fon n variables is odd-cycle free if there is no x_1, x_2, .., x_2k+1 satisfying f(x_i)=1 and sum_i x_i = 0.This property is the Boolean function analogue of bipartiteness in the dense graph model. I will discuss two testing algorithms for this property: the first relies on graph eigenvalues considerations and the second on Fourier analytic techniques. I will also mention several related open problems. Based on joint work with Arnab Bhattacharyya, Prasad Raghavendra, Asaf Shapira