Seminars and Colloquia by Series

Diffeomorphisms of the 4-sphere, Cerf theory and Montesinos twins

Series
Geometry Topology Seminar
Time
Monday, April 12, 2021 - 14:00 for 1 hour (actually 50 minutes)
Location
On line
Speaker
David GayUGA

I'm interested in the smooth mapping class group of S^4, i.e. pi_0(Diff^+(S^4)); we know very little about this group beyond the fact that it is abelian (proving that is a fun warm up exercise). We also know that every orientation preserving diffeomorphism of S^4 is pseudoisotopic to the identity (another fun exercise, starting with the fact that there are no exotic 5-spheres). Cerf theory studies the problem of turning pseudoisotopies into isotopies using parametrized Morse theory. Most of what works in Cerf theory works in dimension 5 and higher, but with a little digging one discovers statements that work in dimension 4 as well. Putting all this stuff together we can show that there is a surjective homomorphism from (a certain limit of) fundamental groups of spaces of embeddings of 2-spheres in connected sums of S^2XS^2 onto this smooth mapping class group of S^4. Furthermore, we can identify two natural, and in some sense complementary, subgroups of this fundamental group, one in the kernel of this homomorphism and one whose image we can understand explicitly in terms of Dehn twist-like diffeomorphisms supported near pairs of embedded S^2's in S^4 (Montesinos twins).

Obstructions to embeddings in 4-manifolds

Series
Geometry Topology Seminar
Time
Friday, April 9, 2021 - 13:00 for 1 hour (actually 50 minutes)
Location
On line
Speaker
Anubhav MukherjeeGeorgia Tech

Please Note: Note special day and time.

In this talk I will discuss some new properties of an invariant for 4-manifold with boundary which was originally defined by Nobuo Iida. As one of the applications of this new invariant I will demonstrate how one can obstruct a knot from being h-slice (i.e bound a homologically trivial disk)  in 4-manifolds. Also, this invariant can be useful to detect exotic smooth structures of 4-manifolds. This a joint work with Nobuo Iida and Masaki Taniguchi.

Abelian Livshits Theorem

Series
CDSNS Colloquium
Time
Friday, April 9, 2021 - 13:00 for 1 hour (actually 50 minutes)
Location
Zoom (see additional notes for link)
Speaker
Andrey GogolevThe Ohio State University

Please Note: Zoom link: https://zoom.us/j/97732215148?pwd=Z0FBNXNFSy9mRUx3UVk4alE4MlRHdz09

The classical Livshits theorem characterizes coboundaries over a transitive Anosov flow as precisely those functions which integrate to zero over all periodic orbits of the flow. I will present a variant of this theorem which uses a weaker assumption and gives a weaker conclusion that the function is an ``abelian coboundary.” Such weaker version corresponds to studying the cohomological equation on infinite abelian covers e.g., for geodesic flows on abelian covers of hyperbolic surfaces. I will also discuss a connection to the marked length spectrum rigidity of Riemannian metrics. Joint work with Federico Rodriguez Hertz.

Mathematical and Data-driven Pattern Representation with Applications in Image Processing, Computer Graphics, and Infinite Dimensional Dynamical Data Mining

Series
Dissertation Defense
Time
Friday, April 9, 2021 - 10:00 for 1.5 hours (actually 80 minutes)
Location
Online
Speaker
Yuchen (Roy) HeSchool of Math, Georgia Institute of Technology

Patterns represent the spatial or temporal regularities intrinsic to various phenomena in nature, society, art, and science. From rigid ones with well-defined generative rules to flexible ones implied by unstructured data, patterns can be assigned to a spectrum. On one extreme, patterns are completely described by algebraic systems where each individual pattern is obtained by repeatedly applying simple operations on primitive elements. On the other extreme, patterns are perceived as visual or frequency regularities without any prior knowledge of the underlying mechanisms. In this presentation, we aim at demonstrating some mathematical techniques for representing patterns traversing the aforementioned spectrum, which leads to qualitative analysis of the patterns’ properties and quantitative prediction of the modeled behaviors from various perspectives. We investigate lattice patterns from material science, shape patterns from computer graphics, submanifold patterns encountered in point cloud processing, color perception patterns applied in underwater image processing, dynamic patterns from spatial-temporal data, and low-rank patterns exploited in medical image reconstruction. For different patterns and based on their dependence on structured or unstructured data, we introduce suitable mathematical representations using techniques ranging from group theory to deep neural networks.

Join Zoom Meeting

https://zoom.us/j/97642529845?pwd=aS9aTGloQnBGVVNQMHd6d0I4eGFNQT09

Meeting ID: 976 4252 9845

Passcode: 42PzXb

 

On a conjectural symmetric version of the Ehrhard inequality

Series
Stochastics Seminar
Time
Thursday, April 8, 2021 - 15:30 for 1 hour (actually 50 minutes)
Location
Speaker
Galyna LivshytsGeorgiaTech

We will discuss a conjectured sharp version of an Ehrhard-type inequality for symmetric convex sets, its connections to other questions, and partial progress towards it. We also discuss some new estimates for non-gaussian measures.

Erdős covering systems

Series
School of Mathematics Colloquium
Time
Thursday, April 8, 2021 - 11:00 for 1 hour (actually 50 minutes)
Location
https://us02web.zoom.us/j/87011170680?pwd=ektPOWtkN1U0TW5ETFcrVDNTL1V1QT09
Speaker
Rob MorrisNational Institute for Pure and Applied Mathematics, Rio de Janeiro, Brazil

A covering system of the integers is a finite collection of arithmetic progressions whose union is the integers. The study of these objects was initiated by Erdős in 1950, and over the following decades he asked a number of beautiful questions about them. Most famously, his so-called "minimum modulus problem" was resolved in 2015 by Hough, who proved that in every covering system with distinct moduli, the minimum modulus is at most $10^{16}$. 

In this talk I will present a variant of Hough's method, which turns out to be both simpler and more powerful. In particular, I will sketch a short proof of Hough's theorem, and discuss several further applications. I will also discuss a related result, proved using a different method, about the number of minimal covering systems.

Joint work with Paul Balister, Béla Bollobás, Julian Sahasrabudhe and Marius Tiba.

Locally uniform domains as extension domains for nonhomogeneous BMO

Series
Analysis Seminar
Time
Wednesday, April 7, 2021 - 14:00 for 1 hour (actually 50 minutes)
Location
ONLINE: https://us02web.zoom.us/j/71579248210?pwd=d2VPck1CbjltZStURWRWUUgwTFVLZz09
Speaker
Galia DafniConcordia University
The talk will present joint work with Almaz Butaev (Calgary) in which we consider local versions of uniform domains and characterize them as extension domains for the nonhomogeneous ("localized") BMO space defined by Goldberg, denoted bmo. As part of this characterization, we show these domains are the same as the $(\epsilon,\delta)$ domains used in Jones' extension theorem for Sobolev spaces, and also that they satisfy a local quasihyperbolically uniform condition. All the above terms will be defined in the talk. The Zoom link for the seminar is here: https://us02web.zoom.us/j/71579248210?pwd=d2VPck1CbjltZStURWRWUUgwTFVLZz09

Exotic smooth structures and H-slice knots

Series
Geometry Topology Student Seminar
Time
Wednesday, April 7, 2021 - 14:00 for 1 hour (actually 50 minutes)
Location
Speaker
Hyunki MinGeorgia Tech

One of interesting topic in low-dimensional topology is to study exotic smooth structures on closed 4-manifolds. In this talk, we will see an example to distinguish exotic smooth structure using H-slice knots.

Coloring graphs with forbidden bipartite subgraphs

Series
Graph Theory Seminar
Time
Tuesday, April 6, 2021 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
James AndersonGeorgia Institute of Technology

A conjecture by Alon, Krivelevich, and Sudakov in 1999 states that for any graph $H$, there is a constant $c_H > 0$ such that if $G$ is $H$-free of maximum degree $\Delta$, then $\chi(G) \leq c_H \Delta / \log\Delta$. It follows from work by Davies et al. in 2020 that this conjecture holds for $H$ bipartite (specifically $H = K_{t, t}$), with the constant $c_H = (t+o(1))$. We improve this constant to $1 + o(1)$ so it does not depend on $H$, and extend our result to the DP-coloring (also known as correspondence coloring) case introduced by Dvořák and Postle. That is, we show for every bipartite graph $B$, if $G$ is $B$-free with maximum degree $\Delta$, then $\chi_{DP}(G) \leq (1+o(1))\Delta/\log(\Delta)$.

This is joint work with Anton Bernshteyn and Abhishek Dhawan.

On the stationary/uniformly rotating solutions of active scalar euquations

Series
Dissertation Defense
Time
Tuesday, April 6, 2021 - 11:00 for 1 hour (actually 50 minutes)
Location
Online
Speaker
Jaemin ParkGeorgia tech

We study qualitative and quantitative properties of stationary/uniformly-rotating solutions of the 2D incompressible Euler equation.

   For qualitative properties, we aim to establish sufficient conditions for such solutions to be radially symmetric. The proof  is based on variational argument, using the fact that a uniformly-rotating solution can be formally thought of as  a critical point of an energy functional. It turns out that if positive vorticity is rotating with angular velocity, not in (0,1/2), then the corresponding energy functional has a unique critical point, while radial ones are always critical points. We apply similar ideas to more general active scalar equations (gSQG) and vortex sheet equation. We also prove that for rotating vortex sheets, there exist  non-radial rotating vortex sheets, bifurcating from radial ones. This work is based on the joint work with Javier Gomez-Serrano, Jia Shi and Yao Yao. 

    It is well-known that there are non-radial rotating patches with angular velocity in (0,1/2). Using the variational argument, we derive some quantitative estimates for their angular velocities and the difference from the radial ones.

Link: https://bluejeans.com/974226566

  

Pages