Seminars and Colloquia by Series

Critical exponents in the Abelian sandpile

Series
Stochastics Seminar
Time
Thursday, September 24, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jack HansonSchool of Mathematics, Georgia Tech and CUNY
The Abelian sandpile was invented as a "self-organized critical" model whose stationary behavior is similar to that of a classical statistical mechanical system at a critical point. On the d-dimensional lattice, many variables measuring correlations in the sandpile are expected to exhibit power-law decay. Among these are various measures of the size of an avalanche when a grain is added at stationarity: the probability that a particular site topples in an avalanche, the diameter of an avalanche, and the number of sites toppled in an avalanche. Various predictions about these exist in the physics literature, but relatively little is known rigorously. We provide some power-law upper and lower bounds for these avalanche size variables and a new approach to the question of stabilizability in two dimensions.

Cyclic polynomials in two variables

Series
Analysis Seminar
Time
Wednesday, September 23, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alan Sola University of South Florida
In my talk, I will discuss coordinate shifts acting on Dirichlet spaces on the bidisk and the problem of finding cyclic vectors for these operators. For polynomials in two complex variables, I will describe a complete characterization given in terms of size and nature of zero sets in the distinguished boundary.

Spatial epidemic models: lattice differential equation analysis of wave behavior

Series
Research Horizons Seminar
Time
Wednesday, September 23, 2015 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chi-Jen, WangSchool of Mathematics, Georgia Institute of Technology

Please Note: Food and Drinks will be provided before the seminar.

Spatially discrete stochastic models have been implemented to analyze cooperative behavior in a variety of biological, ecological, sociological, physical, and chemical systems. In these models, species of different types, or individuals in different states, reside at the sites of a periodic spatial grid. These sites change or switch state according to specific rules (reflecting birth or death, migration, infection, etc.) In this talk, we consider a spatial epidemic model where a population of sick or healthy individual resides on an infinite square lattice. Sick individuals spontaneously recover at rate *p*, and healthy individual become infected at rate O(1) if they have two or more sick neighbors. As *p* increases, the model exhibits a discontinuous transition from an infected to an all healthy state. Relative stability of the two states is assessed by exploring the propagation of planar interfaces separating them (i.e., planar waves of infection or recovery). We find that the condition for equistability or coexistence of the two states (i.e., stationarity of the interface) depends on orientation of the interface. We analyze this stochastic model by applying truncation approximations to the exact master equations describing the evolution of spatially non-uniform states. We thereby obtain a set of discrete (or lattice) reaction-diffusion type equations amenable to numerical analysis.

Probabilistic analysis of some combinatorial optimization problems

Series
Joint ACO and ARC Colloquium
Time
Wednesday, September 23, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Klaus 1116 E
Speaker
Alan FriezeCarnegie Mellon University
We consider the following probabilistic model. The edges of a (complete) graph have unknown random edge weights. We want to build a minimum cost structure. We can ask for the weight of an edge and then accept or reject the edge. Once rejected, the edge cannot be accepted later. We must accept enough edges to support a structure and we are charged for all the edges accepted, even if not used. We give results in this model for minimum spanning tree, perfect matching and shortest path. Joint work with Colin Cooper and Wesley Pegden.

Whitney differentiability in KAM theory

Series
Dynamical Systems Working Seminar
Time
Tuesday, September 22, 2015 - 17:00 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Rafael de la LlaveGeorgia Institute of Technology
We will review the notion of Whitney differentiability and the Whitney embedding theorem. Then, we will also review its applications in KAM theory.

Duality in Convex Algebraic Geometry

Series
Algebra Seminar
Time
Monday, September 21, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rainer SinnGeorgia Tech
Duality is an important feature in convexity and in projective algebraic geometry. We will discuss the interplay of these two dualities for the cone of sums of squares of ternary forms and its dual cone, the Hankel spectrahedron.

Pages