Seminars and Colloquia by Series

The matching problem has no small symmetric SDP

Series
ACO Student Seminar
Time
Friday, October 9, 2015 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Arefin HuqGeorgia Tech
Yannakakis showed that the matching problem does not have a small symmetric linear program. Rothvoß recently proved that any (not necessarily symmetric) linear program also has exponential size. It is natural to ask whether the matching problem can be expressed compactly in a framework such as semidefinite programming (SDP) that is more powerful than linear programming but still allows efficient optimization. We answer this question negatively for symmetric SDPs: any symmetric SDP for the matching problem has exponential size. We also show that an O(k)-round Lasserre SDP relaxation for the metric traveling salesperson problem (TSP) yields at least as good an approximation as any symmetric SDP relaxation of size n^k. The key technical ingredient underlying both these results is an upper bound on the degree needed to derive polynomial identities that hold over the space of matchings or traveling salesperson tours. This is joint work with Jonah Brown-Cohen, Prasad Raghavendra and Benjamin Weitz from Berkeley, and Gabor Braun, Sebastian Pokutta, Aurko Roy and Daniel Zink at Georgia Tech.

Convex regularization for low rank tensor estimation

Series
Stochastics Seminar
Time
Thursday, October 8, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ming YuanUniversity of Wisconsin
Many problems can be formulated as recovering a low-rank tensor. Although an increasingly common task, tensor recovery remains a challenging problem because of the delicacy associated with the decomposition of higher order tensors. We introduce a general framework of convex regularization for low rank tensor estimation.

Wind-driven Waves and Fluid Instabilities

Series
Research Horizons Seminar
Time
Wednesday, October 7, 2015 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Chongchun ZengSchool of Mathematics, Georgia Institute of Technology

Please Note: Food and Drinks will be provided before the seminar.

In this talk, we start with the mathematical modeling of air-water interaction in the framework of the interface problem between two incompressible inviscid fluids under the influence of gravity/surface tension. This is a nonlinear PDE system involving free boundary. It is generally accepted that wind generates surface waves due to the instability of shear flows in this context. Based on the linearized equations about shear flow solutions, we will discuss the classical Kelvin--Helmholtz instability etc. before we illustrate Miles' critical layer theory.

Construction of whiskered invariant tori for fibered holomorphic dynamics (I: Reducibility).

Series
Dynamical Systems Working Seminar
Time
Tuesday, October 6, 2015 - 17:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mikel de VianaGeorgia Tech
We consider fibered holomorphic dynamics, generated by a skew product over an irrational translation of the torus. The invariant object that organizes the dynamics is an invariant torus. Often one can find an approximately invariant torus K_0, and we construct an invariant torus, starting from K_0. The main technique is a KAM iteration in a-posteriori format. The asymptotic properties of the derivative cocycle A_K play a crucial role: In this first talk we will find suitable geometric and number-theoretic conditions for A_K. Later, we will see how to relax these conditions.

Approximation of p-ground states

Series
PDE Seminar
Time
Tuesday, October 6, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ryan HyndUniversity of Pennsylvania
The smallest eigenvalue of a symmetric matrix A can be expressed through Rayleigh's formula. Moreover, if the smallest eigenvalue is simple, it can be approximated by using the inverse iteration method or by studying the large time behavior of solutions of the ODE x'(t)=-Ax(t). We discuss surprising analogs of these facts for a nonlinear PDE eigenvalue problem involving the p-Laplacian.

Pages